找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Pipeline; Building a Deep Lear Hisham El-Amir,Mahmoud Hamdy Book 2020 Hisham El-Amir and Mahmoud Hamdy 2020 deep learning.dee

[復制鏈接]
查看: 13371|回復: 58
樓主
發(fā)表于 2025-3-21 19:32:31 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning Pipeline
副標題Building a Deep Lear
編輯Hisham El-Amir,Mahmoud Hamdy
視頻videohttp://file.papertrans.cn/265/264578/264578.mp4
概述Discover the difference between the regular and pipelined model of deep learning.Learn all the detailed steps of an applicable deep learning pipeline.Use a pipeline to help better manage deep learning
圖書封面Titlebook: Deep Learning Pipeline; Building a Deep Lear Hisham El-Amir,Mahmoud Hamdy Book 2020 Hisham El-Amir and Mahmoud Hamdy 2020 deep learning.dee
描述.Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects.?.You‘ll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets.??.You‘ll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you‘ve ever considered building your own image or text-tagging solution or entering a Kaggle contest,?.Deep Learning Pipeline. is for you! .What You‘ll Learn.Develop a deep learning project using data.Study and apply various models to your data.Debug and troubleshoot the proper m
出版日期Book 2020
關(guān)鍵詞deep learning; deep learning pipeline; TensorFlow; Python; R programming; machine learning
版次1
doihttps://doi.org/10.1007/978-1-4842-5349-6
isbn_softcover978-1-4842-5348-9
isbn_ebook978-1-4842-5349-6
copyrightHisham El-Amir and Mahmoud Hamdy 2020
The information of publication is updating

書目名稱Deep Learning Pipeline影響因子(影響力)




書目名稱Deep Learning Pipeline影響因子(影響力)學科排名




書目名稱Deep Learning Pipeline網(wǎng)絡(luò)公開度




書目名稱Deep Learning Pipeline網(wǎng)絡(luò)公開度學科排名




書目名稱Deep Learning Pipeline被引頻次




書目名稱Deep Learning Pipeline被引頻次學科排名




書目名稱Deep Learning Pipeline年度引用




書目名稱Deep Learning Pipeline年度引用學科排名




書目名稱Deep Learning Pipeline讀者反饋




書目名稱Deep Learning Pipeline讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:16:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:40:04 | 只看該作者
Deep Learning Fundamentalsll try to build layers from these functions and combine these layers together to get a more complex model that will help us solve more complex problems, and all that will be described by TensorFlow examples.
地板
發(fā)表于 2025-3-22 08:39:15 | 只看該作者
5#
發(fā)表于 2025-3-22 11:13:08 | 只看該作者
Sequential Modelsoptions. First, if they can’t understand it, they can read articles that the new article is based on, for background information. Otherwise, they . understand the new article, based on some prior knowledge of the subject, without an immediate need to read similar articles. In both cases, their abili
6#
發(fā)表于 2025-3-22 16:03:04 | 只看該作者
7#
發(fā)表于 2025-3-22 17:19:52 | 只看該作者
8#
發(fā)表于 2025-3-23 00:56:08 | 只看該作者
9#
發(fā)表于 2025-3-23 02:36:28 | 只看該作者
Book 2020in data science. If you‘ve ever considered building your own image or text-tagging solution or entering a Kaggle contest,?.Deep Learning Pipeline. is for you! .What You‘ll Learn.Develop a deep learning project using data.Study and apply various models to your data.Debug and troubleshoot the proper m
10#
發(fā)表于 2025-3-23 07:04:48 | 只看該作者
Alexander V. Palagin,Vladimir M. Opanasenkoltilayer neural networks (both the number of layers and the number of neurons in each layer) must be limited for computational considerations, should there be any architectural changes introduced to a standard multilayer neural network to accommodate this additional constraint about the data or the network complexity?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
巴楚县| 十堰市| 靖宇县| 时尚| 黄石市| 浦县| 唐河县| 鄄城县| 偏关县| 永平县| 晴隆县| 明光市| 金溪县| 吉木萨尔县| 安新县| 九龙坡区| 曲靖市| 青浦区| 宜州市| 南郑县| 连云港市| 阿图什市| 诸城市| 贞丰县| 赤城县| 浮山县| 余江县| 咸宁市| 荔浦县| 六枝特区| 呼玛县| 诸暨市| 宣恩县| 苍梧县| 博白县| 玉林市| 梧州市| 武强县| 静宁县| 郴州市| 肥城市|