找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Architectures; A Mathematical Appro Ovidiu Calin Textbook 2020 Springer Nature Switzerland AG 2020 neural networks.deep learn

[復(fù)制鏈接]
查看: 32659|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:23:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning Architectures
副標(biāo)題A Mathematical Appro
編輯Ovidiu Calin
視頻videohttp://file.papertrans.cn/265/264572/264572.mp4
概述Contains a fair number of end-of chapter exercises.Full solutions provided to all exercises.Appendices including topics needed in the book exposition
叢書名稱Springer Series in the Data Sciences
圖書封面Titlebook: Deep Learning Architectures; A Mathematical Appro Ovidiu Calin Textbook 2020 Springer Nature Switzerland AG 2020 neural networks.deep learn
描述.This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter..This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates.? In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject..?. .?.
出版日期Textbook 2020
關(guān)鍵詞neural networks; deep learning; machine learning; Kullback-Leibler divergence; Entropy; Fisher informatio
版次1
doihttps://doi.org/10.1007/978-3-030-36721-3
isbn_softcover978-3-030-36723-7
isbn_ebook978-3-030-36721-3Series ISSN 2365-5674 Series E-ISSN 2365-5682
issn_series 2365-5674
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Deep Learning Architectures影響因子(影響力)




書目名稱Deep Learning Architectures影響因子(影響力)學(xué)科排名




書目名稱Deep Learning Architectures網(wǎng)絡(luò)公開度




書目名稱Deep Learning Architectures網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning Architectures被引頻次




書目名稱Deep Learning Architectures被引頻次學(xué)科排名




書目名稱Deep Learning Architectures年度引用




書目名稱Deep Learning Architectures年度引用學(xué)科排名




書目名稱Deep Learning Architectures讀者反饋




書目名稱Deep Learning Architectures讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:19:30 | 只看該作者
Cost Functionsity between the prediction of the network and the associated target. This is also known under the equivalent names of ., ., or .. In the following we shall describe some of the most familiar cost functions used in neural networks.
板凳
發(fā)表于 2025-3-22 00:41:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:45:17 | 只看該作者
Neural Networksyers of neurons, forming .. A layer of neurons is a processing step into a neural network and can be of different types, depending on the weights and activation function used in its neurons (fully-connected layer, convolution layer, pooling layer, etc.) The main part of this chapter will deal with t
5#
發(fā)表于 2025-3-22 08:48:42 | 只看該作者
Approximation Theoremsapproximation results included in this chapter contain Dini’s theorem, Arzela-Ascoli’s theorem, Stone-Weierstrass theorem, Wiener’s Tauberian theorem, and the contraction principle. Some of their applications to learning will be provided within this chapter, while others will be given in later chapt
6#
發(fā)表于 2025-3-22 16:23:08 | 只看該作者
7#
發(fā)表于 2025-3-22 18:05:36 | 只看該作者
Information Representationnd networks using the concept of sigma-algebra. The main idea is to describe the evolution of the information content through the layers of a network. The network’s input is considered to be a random variable, being characterized by a certain information. Consequently, all network layer activations
8#
發(fā)表于 2025-3-22 21:21:55 | 只看該作者
2365-5674 ates.? In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject..?. .?.978-3-030-36723-7978-3-030-36721-3Series ISSN 2365-5674 Series E-ISSN 2365-5682
9#
發(fā)表于 2025-3-23 02:57:44 | 只看該作者
Textbook 2020 universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegan
10#
發(fā)表于 2025-3-23 06:07:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨竹工卡县| 阿巴嘎旗| 鲁山县| 许昌县| 蕲春县| 永和县| 始兴县| 涪陵区| 宁化县| 咸丰县| 德安县| 都匀市| 象州县| 杂多县| 涞水县| 石嘴山市| 米脂县| 南川市| 郴州市| 江都市| 饶阳县| 苗栗市| 夹江县| 泽州县| 延长县| 乐安县| 石家庄市| 饶平县| 和田市| 嘉鱼县| 昂仁县| 桦南县| 绿春县| 克东县| 凯里市| 宣武区| 广丰县| 鄱阳县| 余江县| 兰考县| 兖州市|