找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Approaches to Text Production; Shashi Narayan,Claire Gardent Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: 助手
11#
發(fā)表于 2025-3-23 13:08:51 | 只看該作者
Design and Use of Assistive Technologyned with (i.e., text production from data, from text, and from meaning representations) and we summarise the content of each chapter. We also indicate what is not covered and introduce some notational conventions.
12#
發(fā)表于 2025-3-23 14:26:40 | 只看該作者
13#
發(fā)表于 2025-3-23 20:36:51 | 只看該作者
https://doi.org/10.1007/978-3-540-74111-4pipeline of modules, each performing a specific subtask. The neural approach is very different from the pre-neural approach in that it provides a uniform (end-to-end) framework for text production. First the input is projected on a continuous representation (representation learning), and then, the g
14#
發(fā)表于 2025-3-23 23:35:05 | 只看該作者
15#
發(fā)表于 2025-3-24 06:20:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:00:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:23:37 | 只看該作者
Synthesis Lectures on Human Language Technologieshttp://image.papertrans.cn/d/image/264571.jpg
18#
發(fā)表于 2025-3-24 15:57:00 | 只看該作者
19#
發(fā)表于 2025-3-24 19:52:10 | 只看該作者
Pre-Neural Approachesltiple, interacting factors and differ depending on the NLG task they address. More specifically, three main types of pre-neural NLG architectures can be distinguished depending on whether the task is to generate from data from meaning representations or text.
20#
發(fā)表于 2025-3-24 23:19:17 | 只看該作者
Generating Better Textome data), is first encoded into a continuous representation. This representation is then input to the decoder, which predicts output words, one step at a time, conditioned both on the input representation and on the previously predicted words.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄浦区| 怀仁县| 乐陵市| 聂拉木县| 花莲县| 萍乡市| 霍山县| 横峰县| 山丹县| 乌兰浩特市| 西吉县| 萝北县| 夏邑县| 洱源县| 南宁市| 青铜峡市| 山阳县| 夏津县| 永嘉县| 江都市| 桐城市| 承德县| 青龙| 聂荣县| 汉中市| 天等县| 广饶县| 建瓯市| 博湖县| 高安市| 昌吉市| 邯郸县| 枣庄市| 青阳县| 安宁市| 铜陵市| 延庆县| 水城县| 福州市| 富蕴县| 会宁县|