找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Approaches for Spoken and Natural Language Processing; Virender Kadyan,Amitoj Singh,Laith Abualigah Book 2021 The Editor(s)

[復(fù)制鏈接]
查看: 50633|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:55:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing
編輯Virender Kadyan,Amitoj Singh,Laith Abualigah
視頻videohttp://file.papertrans.cn/265/264570/264570.mp4
概述Discusses current research challenges and future perspective about how deep learning techniques can be applied to improve NLP and speech processing applications.Presents and escalates the research tre
叢書(shū)名稱Signals and Communication Technology
圖書(shū)封面Titlebook: Deep Learning Approaches for Spoken and Natural Language Processing;  Virender Kadyan,Amitoj Singh,Laith Abualigah Book 2021 The Editor(s)
描述This book provides insights into how deep learning techniques impact language and speech processing applications. The authors discuss the promise, limits and the new challenges in deep learning. The book covers the major differences between the various applications of deep learning and the classical machine learning techniques. The main objective of the book is to present a comprehensive survey of the major applications and research oriented articles based on deep learning techniques that are focused on natural language and speech signal processing. The book is relevant to academicians, research scholars, industrial experts, scientists and post graduate students working in the field of speech signal and natural language processing and would like to add deep learning to enhance capabilities of their work..Discusses current research challenges and future perspective about how deep learning techniques can be applied to improve NLP and speech processing applications;.Presents and escalates the research trends and future direction of language and speech processing;.Includes theoretical research, experimental results, and applications of deep learning..
出版日期Book 2021
關(guān)鍵詞Handwriting Recognition; Pattern Recognition; Speech Recognition; Spoken Language Processing; Writer Ide
版次1
doihttps://doi.org/10.1007/978-3-030-79778-2
isbn_softcover978-3-030-79780-5
isbn_ebook978-3-030-79778-2Series ISSN 1860-4862 Series E-ISSN 1860-4870
issn_series 1860-4862
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing影響因子(影響力)




書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing被引頻次




書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing被引頻次學(xué)科排名




書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing年度引用




書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing年度引用學(xué)科排名




書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing讀者反饋




書(shū)目名稱Deep Learning Approaches for Spoken and Natural Language Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:29 | 只看該作者
Signals and Communication Technologyhttp://image.papertrans.cn/d/image/264570.jpg
板凳
發(fā)表于 2025-3-22 01:45:02 | 只看該作者
Deep Learning Approaches for Spoken and Natural Language Processing978-3-030-79778-2Series ISSN 1860-4862 Series E-ISSN 1860-4870
地板
發(fā)表于 2025-3-22 04:49:07 | 只看該作者
https://doi.org/10.1007/978-3-030-79778-2Handwriting Recognition; Pattern Recognition; Speech Recognition; Spoken Language Processing; Writer Ide
5#
發(fā)表于 2025-3-22 08:44:28 | 只看該作者
6#
發(fā)表于 2025-3-22 15:03:58 | 只看該作者
7#
發(fā)表于 2025-3-22 18:27:47 | 只看該作者
Xiao Guo,Zhenjiang Shen,Xiao Teng,Yong Linmultiple choice and true/false questions because the answers are specific compared with essay question answers. Automatic grading system (AGS) was developed to evaluate essay answers using a computer program that solves manual grading process problems like high cost, time-consuming task, increasing
8#
發(fā)表于 2025-3-22 21:36:50 | 只看該作者
Junjie Li,Shuo Tian,Yuanhui Liu corresponding to every vowel for the improved efficiency of Automatic Speech Recognition (ASR) system. In this research, the linguistic study of native speakers and their auditory inconsistency was pursued using the extraction of efficient front-end speech vectors utilizing three varying fractal di
9#
發(fā)表于 2025-3-23 03:55:56 | 只看該作者
10#
發(fā)表于 2025-3-23 09:01:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 01:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山丹县| 禹州市| 华蓥市| 泸溪县| 台北县| 城口县| 石屏县| 闻喜县| 澄迈县| 盐源县| 都江堰市| 鹤山市| 溆浦县| 镇康县| 湟源县| 乡城县| 资兴市| 龙游县| 龙江县| 金湖县| 泸西县| 襄垣县| 嘉黎县| 乐安县| 东乡族自治县| 朔州市| 双峰县| 若羌县| 滨海县| 阿坝县| 秦皇岛市| 玉林市| 德保县| 贵州省| 娄底市| 团风县| 嘉黎县| 姚安县| 犍为县| 修文县| 荥阳市|