找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Applications, Volume 3; M. Arif Wani,Bhiksha Raj,Dejing Dou Book 2022 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
查看: 26295|回復: 35
樓主
發(fā)表于 2025-3-21 19:23:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning Applications, Volume 3
編輯M. Arif Wani,Bhiksha Raj,Dejing Dou
視頻videohttp://file.papertrans.cn/265/264568/264568.mp4
概述Describes novel ways of using deep learning architectures for real-world applications.Presents results of using deep learning models for selected applications.Provides a copy of software/code and test
叢書名稱Advances in Intelligent Systems and Computing
圖書封面Titlebook: Deep Learning Applications, Volume 3;  M. Arif Wani,Bhiksha Raj,Dejing Dou Book 2022 The Editor(s) (if applicable) and The Author(s), under
描述.This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN) ?for the above applications are covered in this book. Readers will find insights to help them realize novel waysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the ind
出版日期Book 2022
關鍵詞Deep Learning Architectures; Deep Learning Algorithms; Deep Learning Models; Convolutional Neural Netwo
版次1
doihttps://doi.org/10.1007/978-981-16-3357-7
isbn_softcover978-981-16-3356-0
isbn_ebook978-981-16-3357-7Series ISSN 2194-5357 Series E-ISSN 2194-5365
issn_series 2194-5357
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Deep Learning Applications, Volume 3影響因子(影響力)




書目名稱Deep Learning Applications, Volume 3影響因子(影響力)學科排名




書目名稱Deep Learning Applications, Volume 3網(wǎng)絡公開度




書目名稱Deep Learning Applications, Volume 3網(wǎng)絡公開度學科排名




書目名稱Deep Learning Applications, Volume 3被引頻次




書目名稱Deep Learning Applications, Volume 3被引頻次學科排名




書目名稱Deep Learning Applications, Volume 3年度引用




書目名稱Deep Learning Applications, Volume 3年度引用學科排名




書目名稱Deep Learning Applications, Volume 3讀者反饋




書目名稱Deep Learning Applications, Volume 3讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:11:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:14:13 | 只看該作者
地板
發(fā)表于 2025-3-22 08:25:11 | 只看該作者
A Comprehensive Analysis of Subword Contextual Embeddings for Languages with Rich Morphology,models significantly differ across languages. Moreover, our analysis provided various critical findings of multi-task learning (MTL), transfer learning, and external features in different settings. We further verified these findings on noisy datasets for the Sentiment Analysis task as a case study.
5#
發(fā)表于 2025-3-22 08:45:59 | 只看該作者
6#
發(fā)表于 2025-3-22 13:00:13 | 只看該作者
7#
發(fā)表于 2025-3-22 19:56:02 | 只看該作者
8#
發(fā)表于 2025-3-23 01:15:24 | 只看該作者
Lecture Notes in Mechanical Engineering we investigate the effect of the performance of four well-known depth estimation methods on our fusion architecture. Moreover, we compared the fusion architecture with two uni-modal architectures which use only RGB or depth images for object detection. The experimental results on the KITTI dataset
9#
發(fā)表于 2025-3-23 02:57:32 | 只看該作者
2194-5357 ysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the ind978-981-16-3356-0978-981-16-3357-7Series ISSN 2194-5357 Series E-ISSN 2194-5365
10#
發(fā)表于 2025-3-23 08:18:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宿州市| 噶尔县| 卓尼县| 泽州县| 绥宁县| 甘孜县| 石景山区| 社旗县| 手游| 德令哈市| 桑植县| 霸州市| 霍州市| 万安县| 确山县| 沙湾县| 蛟河市| 南召县| 台安县| 嘉义市| 大洼县| 景泰县| 黔南| 从化市| 阿拉尔市| 昌都县| 师宗县| 兴安盟| 大新县| 包头市| 皋兰县| 聂荣县| 石首市| 安图县| 张家港市| 利辛县| 五指山市| 方正县| 涟源市| 乌鲁木齐市| 霍城县|