找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Applications, Volume 2; M. Arif Wani,Taghi M. Khoshgoftaar,Vasile Palade Book 2021 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: 習(xí)慣
31#
發(fā)表于 2025-3-26 22:20:10 | 只看該作者
A Comprehensive Set of Novel Residual Blocks for Deep Learning Architectures for Diagnosis of Retine deep residual architectures. The technique proposed in this chapter achieves better accuracy compared to the state of the art for two separately hosted Retinal OCT image data-sets. Furthermore, we illustrate a real-time prediction system that by exploiting this deep residual architecture, consisti
32#
發(fā)表于 2025-3-27 02:45:00 | 只看該作者
Three-Stream Convolutional Neural Network for Human Fall Detection,nce of the individual, diminishing their independence. In this work, we propose a method capable of detecting human falls in video sequences using multi-channel convolutional neural networks (CNN). Our method makes use of a 3D CNN fed with features previously extracted from each frame to generate a
33#
發(fā)表于 2025-3-27 07:53:13 | 只看該作者
34#
發(fā)表于 2025-3-27 10:34:19 | 只看該作者
Automatic Solar Panel Detection from High-Resolution Orthoimagery Using Deep Learning Segmentation r panel arrays from satellite imagery. The networks are tested on real data and augmented data. Results indicate that deep learning segmentation networks work well for automatic solar panel detection from high-resolution orthoimagery.
35#
發(fā)表于 2025-3-27 16:49:01 | 只看該作者
Training Deep Learning Sequence Models to Understand Driver Behavior,twork and the encoder–decoder model with attention were built and trained to analyze the effect of memory and attention on the computational expense and performance of the model. We compare the performance of these two complex networks to that of the MLP in estimating driver behavior. We show that o
36#
發(fā)表于 2025-3-27 20:12:28 | 只看該作者
Exploiting Spatio-Temporal Correlation in RF Data Using Deep Learning,ing techniques are the typically used for analyzing past observations and to predict the future occurrences of events in a given RF environment. Machine learning (ML) techniques, having already proven useful in various domains, are also being sought for characterizing and understanding the RF enviro
37#
發(fā)表于 2025-3-28 00:26:08 | 只看該作者
38#
發(fā)表于 2025-3-28 05:35:42 | 只看該作者
39#
發(fā)表于 2025-3-28 08:52:20 | 只看該作者
Vehicular Localisation at High and Low Estimation Rates During GNSS Outages: A Deep Learning Approa Several deep learning algorithms have been employed to learn the error drift for a better positioning prediction. We therefore investigate in this chapter the performance of Long Short-Term Memory (LSTM), Input Delay Neural Network (IDNN), Multi-Layer Neural Network (MLNN) and Kalman Filter (KF) fo
40#
發(fā)表于 2025-3-28 12:03:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 05:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苗栗县| 青铜峡市| 曲松县| 奉化市| 肥城市| 顺平县| 托里县| 庆安县| 三门县| 称多县| 佛教| 柘荣县| 丹巴县| 伊吾县| 忻城县| 富蕴县| 新化县| 吴桥县| 大埔区| 荆州市| 临海市| 乐平市| 万荣县| 秦安县| 南丹县| 余庆县| 潼关县| 封开县| 于田县| 怀安县| 牙克石市| 罗城| 安丘市| 沛县| 青神县| 镇平县| 伊宁县| 凌源市| 德兴市| 罗城| 新竹县|