找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Applications in Image Analysis; Sanjiban Sekhar Roy,Ching-Hsien Hsu,Venkateshwara Book 2023 The Editor(s) (if applicable) a

[復制鏈接]
查看: 47496|回復: 45
樓主
發(fā)表于 2025-3-21 19:28:11 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning Applications in Image Analysis
編輯Sanjiban Sekhar Roy,Ching-Hsien Hsu,Venkateshwara
視頻videohttp://file.papertrans.cn/265/264566/264566.mp4
概述Reviews exhaustively the key recent research into deep learning applications in image analysis.Covers many different deep learning applications in medical, satellite, forensic image analysis.Demonstra
叢書名稱Studies in Big Data
圖書封面Titlebook: Deep Learning Applications in Image Analysis;  Sanjiban Sekhar Roy,Ching-Hsien Hsu,Venkateshwara  Book 2023 The Editor(s) (if applicable) a
描述This book provides state-of-the-art coverage of deep learning applications in image analysis. The book demonstrates various deep learning algorithms that can offer practical solutions for various image-related problems; also how these algorithms are used by scientists and scholars in industry and academia. This includes autoencoder and deep convolutional generative adversarial network in improving classification performance of Bangla handwritten characters, dealing with deep learning-based approaches using feature selection methods for automatic diagnosis of covid-19 disease from x-ray images, imbalance image data sets of classification, image captioning using deep transfer learning, developing a vehicle over speed detection system, creating an intelligent system for video-based proximity analysis, building a melanoma cancer detection system using deep learning, plant diseases classification using AlexNet, dealing with hyperspectral images using deep learning, chest x-ray image classification of pneumonia disease using efficient net and inceptionv3..The book also addresses the difficulty of implementing deep learning in terms of computation time and the complexity of reasoning and
出版日期Book 2023
關鍵詞Deep Learning; Image Processing; Medical Image Processing; Satellite Image Classification; Convolutional
版次1
doihttps://doi.org/10.1007/978-981-99-3784-4
isbn_softcover978-981-99-3786-8
isbn_ebook978-981-99-3784-4Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Deep Learning Applications in Image Analysis影響因子(影響力)




書目名稱Deep Learning Applications in Image Analysis影響因子(影響力)學科排名




書目名稱Deep Learning Applications in Image Analysis網(wǎng)絡公開度




書目名稱Deep Learning Applications in Image Analysis網(wǎng)絡公開度學科排名




書目名稱Deep Learning Applications in Image Analysis被引頻次




書目名稱Deep Learning Applications in Image Analysis被引頻次學科排名




書目名稱Deep Learning Applications in Image Analysis年度引用




書目名稱Deep Learning Applications in Image Analysis年度引用學科排名




書目名稱Deep Learning Applications in Image Analysis讀者反饋




書目名稱Deep Learning Applications in Image Analysis讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:54:36 | 只看該作者
Deep Learning-Based Approaches Using Feature Selection Methods for Automatic Diagnosis of COVID-19 nents and hundreds of countries, will go down in history as the first pandemic produced by coronaviruses. The World Health Organization (WHO) classified COVID-19 as a “pandemic” on March 11, 2020. To avoid the future spread of this pandemic and to promptly treat infected patients, it is crucial to f
板凳
發(fā)表于 2025-3-22 03:03:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:23:09 | 只看該作者
5#
發(fā)表于 2025-3-22 10:39:17 | 只看該作者
6#
發(fā)表于 2025-3-22 12:54:26 | 只看該作者
7#
發(fā)表于 2025-3-22 18:53:11 | 只看該作者
Plant Diseases Classification Using Neural Network: AlexNet,lution and not even budget friendly. To provide all the farmers and cultivators with smartphones with internet access, we could reduce the food loss in the country. In this chapter we have covered how deep learning can be used to make an image classifier based on AlexNet. The trained weight is then
8#
發(fā)表于 2025-3-23 00:41:50 | 只看該作者
Hyperspectral Images: A Succinct Analytical Deep Learning Study,lications to global safety issues with core concepts of classification, segmentation, anomaly detection and prediction. The use of DL on satellite images and to achieve best performance, the research is swiftly trending from traditional machine learning to deep learning approaches..In this chapter,
9#
發(fā)表于 2025-3-23 02:37:25 | 只看該作者
10#
發(fā)表于 2025-3-23 06:53:07 | 只看該作者
Deep Learning-Based Approaches Using Feature Selection Methods for Automatic Diagnosis of COVID-19 AY images and reduce the number of house gray tones The application of artificial intelligence and machine learning techniques to radiological images helps to detect this disease accurately and quickly. In this study, 13 different deep learning techniques were studied using Chi-square, NCA, mRMR and
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南宁市| 邛崃市| 新邵县| 林周县| 肃宁县| 葫芦岛市| 唐山市| 五家渠市| 嘉定区| 临夏县| 西华县| 沙雅县| 出国| 肇州县| 敦化市| 麻城市| 西华县| 吴江市| 额济纳旗| 辽阳市| 门源| 湟源县| 双流县| 东阳市| 西乌| 中卫市| 枝江市| 车险| 鲁甸县| 明溪县| 吐鲁番市| 乐平市| 当雄县| 吉林市| 西丰县| 姜堰市| 资源县| 延长县| 台北市| 万荣县| 舟山市|