找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Fusion of Computational and Symbolic Processing; Takeshi Furuhashi,Shun’Ichi Tano,Hans-Arno Jacobse Book 2001 Springer-Verlag Berlin

[復(fù)制鏈接]
查看: 34180|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:34:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Fusion of Computational and Symbolic Processing
編輯Takeshi Furuhashi,Shun’Ichi Tano,Hans-Arno Jacobse
視頻videohttp://file.papertrans.cn/265/264552/264552.mp4
概述First publication of recent results of study under the name of integration of computational processing and symbolic processing.Thorough coverage of recent attempts to combine/hybridize/fuse symbolic p
叢書(shū)名稱Studies in Fuzziness and Soft Computing
圖書(shū)封面Titlebook: Deep Fusion of Computational and Symbolic Processing;  Takeshi Furuhashi,Shun’Ichi Tano,Hans-Arno Jacobse Book 2001 Springer-Verlag Berlin
描述Symbolic processing has limitations highlighted by the symbol grounding problem. Computational processing methods, like fuzzy logic, neural networks, and statistical methods have appeared to overcome these problems. However, they also suffer from drawbacks in that, for example, multi-stage inference is difficult to implement. Deep fusion of symbolic and computational processing is expected to open a new paradigm for intelligent systems. Symbolic processing and computational processing should interact at all abstract or computational levels. For this undertaking, attempts to combine, hybridize, and fuse these processing methods should be thoroughly investigated and the direction of novel fusion approaches should be clarified. This book contains the current status of this attempt and also discusses future directions.
出版日期Book 2001
關(guān)鍵詞Computational Processing; Neuro-symbolic System; Symbolic Processing; control; dynamical systems; fuzzy l
版次1
doihttps://doi.org/10.1007/978-3-7908-1837-6
isbn_softcover978-3-662-00373-2
isbn_ebook978-3-7908-1837-6Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

書(shū)目名稱Deep Fusion of Computational and Symbolic Processing影響因子(影響力)




書(shū)目名稱Deep Fusion of Computational and Symbolic Processing影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Fusion of Computational and Symbolic Processing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Fusion of Computational and Symbolic Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Fusion of Computational and Symbolic Processing被引頻次




書(shū)目名稱Deep Fusion of Computational and Symbolic Processing被引頻次學(xué)科排名




書(shū)目名稱Deep Fusion of Computational and Symbolic Processing年度引用




書(shū)目名稱Deep Fusion of Computational and Symbolic Processing年度引用學(xué)科排名




書(shū)目名稱Deep Fusion of Computational and Symbolic Processing讀者反饋




書(shū)目名稱Deep Fusion of Computational and Symbolic Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:29 | 只看該作者
978-3-662-00373-2Springer-Verlag Berlin Heidelberg 2001
板凳
發(fā)表于 2025-3-22 00:42:05 | 只看該作者
https://doi.org/10.1007/978-1-4842-3603-1st (symbolic) and distributed representations, based on the two-level approach proposed in Sun (1995). The model learns and utilizes procedural and declarative knowledge, tapping into the synergy of the two types of processes. It unifies neural, reinforcement, and symbolic methods to perform on-line
地板
發(fā)表于 2025-3-22 06:42:02 | 只看該作者
https://doi.org/10.1007/978-1-4842-3603-1se methods is studied. A special processor to combine different methods is necessary for integration. It is called an integrator. Among various information-processing methods, only declarative knowledge-based method is suited for an integrator. Then the realistic way of developing the integrator is
5#
發(fā)表于 2025-3-22 09:42:00 | 只看該作者
6#
發(fā)表于 2025-3-22 16:30:35 | 只看該作者
7#
發(fā)表于 2025-3-22 17:09:34 | 只看該作者
https://doi.org/10.1007/978-1-4842-3603-1 “fuzzy” sequential knowledge for the description of dynamic characteristics of a system. Symbolic Dynamic System(SDS), a model for symbolic sequences, is extended to deal with “fuzzy” symbolic sequences. This approach introduces topological nature into the symbolic sequences, which allows an interp
8#
發(fā)表于 2025-3-23 00:51:20 | 只看該作者
https://doi.org/10.1007/978-1-4842-3603-1 comparison with its predecessor because the learning and the knowledge extraction process are faster and are accomplished in an incremental way . INSS offers a new approach applicable to constructive machine learning with high-performance tools, even in the presence of incomplete or erroneous data.
9#
發(fā)表于 2025-3-23 01:33:47 | 只看該作者
10#
發(fā)表于 2025-3-23 05:46:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长汀县| 青河县| 馆陶县| 巢湖市| 葵青区| 大丰市| 英山县| 吴旗县| 台安县| 锡林浩特市| 舒兰市| 济宁市| 溆浦县| 永安市| 公安县| 常熟市| 股票| 伊吾县| 武威市| 渝北区| 竹溪县| 盈江县| 宝丰县| 宁河县| 云安县| 西乌珠穆沁旗| 西城区| 大竹县| 偏关县| 洞口县| 辛集市| 邯郸市| 顺平县| 获嘉县| 萍乡市| 南澳县| 石首市| 建阳市| 崇明县| 昌图县| 泰顺县|