找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Belief Nets in C++ and CUDA C: Volume 2; Autoencoding in the Timothy Masters Book 2018 Timothy Masters 2018 C++.CUDA C.AI.artificial

[復(fù)制鏈接]
查看: 22147|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:28:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2
副標(biāo)題Autoencoding in the
編輯Timothy Masters
視頻videohttp://file.papertrans.cn/265/264523/264523.mp4
概述A practical book with source code and algorithms on deep learning with C++ and CUDA C.Second of three books in a series on C++ and CUDA C deep learning and belief nets.Author is an authority on numeri
圖書封面Titlebook: Deep Belief Nets in C++ and CUDA C: Volume 2; Autoencoding in the  Timothy Masters Book 2018 Timothy Masters 2018 C++.CUDA C.AI.artificial
描述Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You’ll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications.?.Deep Belief Nets in C++ and CUDA C: Volume 2?.also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you’ll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable.?.At each step this book.?.provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards.?.What You‘ll Learn.Code for deep learning, neural networks, and AI using C++ and CUDA C.Car
出版日期Book 2018
關(guān)鍵詞C++; CUDA C; AI; artificial intel; machine learning; deep learning; programming; algorithms; numerical; compu
版次1
doihttps://doi.org/10.1007/978-1-4842-3646-8
isbn_softcover978-1-4842-3645-1
isbn_ebook978-1-4842-3646-8
copyrightTimothy Masters 2018
The information of publication is updating

書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2影響因子(影響力)




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2影響因子(影響力)學(xué)科排名




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2網(wǎng)絡(luò)公開度




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2被引頻次




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2被引頻次學(xué)科排名




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2年度引用




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2年度引用學(xué)科排名




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2讀者反饋




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 2讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:07:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:31:58 | 只看該作者
Image Preprocessing,h it is an important one whose computational details are often glossed over in other references. Here we will downplay the deep theory, which is widely available, and focus on the practical implementation details, which are not so widely available.
地板
發(fā)表于 2025-3-22 08:19:25 | 只看該作者
https://doi.org/10.1007/978-1-4842-3646-8C++; CUDA C; AI; artificial intel; machine learning; deep learning; programming; algorithms; numerical; compu
5#
發(fā)表于 2025-3-22 08:58:45 | 只看該作者
Lionel Bercovitch,Clifford Perlise. This is especially true when the model is processing signals or images, which by nature have a visual representation. If the developer can study examples of the features that the model is associating with each class, this lucky developer may be clued in to strengths and weaknesses of the model. In this chapter, we will see how this can be done.
6#
發(fā)表于 2025-3-22 14:12:45 | 只看該作者
7#
發(fā)表于 2025-3-22 17:55:12 | 只看該作者
8#
發(fā)表于 2025-3-23 00:52:11 | 只看該作者
Timothy MastersA practical book with source code and algorithms on deep learning with C++ and CUDA C.Second of three books in a series on C++ and CUDA C deep learning and belief nets.Author is an authority on numeri
9#
發(fā)表于 2025-3-23 03:14:05 | 只看該作者
http://image.papertrans.cn/d/image/264523.jpg
10#
發(fā)表于 2025-3-23 07:36:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐县| 巢湖市| 西安市| 廉江市| 忻州市| 海林市| 凤城市| 五原县| 林周县| 阳谷县| 辽阳县| 鄯善县| 肇东市| 正安县| 柘荣县| 乌鲁木齐县| 巍山| 成武县| 枣强县| 新津县| 安达市| 常德市| 宁海县| 石棉县| 九江县| 宁国市| 肇庆市| 比如县| 永川市| 尚志市| 濮阳县| 建水县| 德州市| 黄平县| 新闻| 科技| 绥德县| 山阴县| 诸暨市| 吉林省| 衡南县|