找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Decision and Game Theory for Security; 10th International C Tansu Alpcan,Yevgeniy Vorobeychik,Gy?rgy Dán Conference proceedings 2019 Spring

[復(fù)制鏈接]
樓主: 哄笑
31#
發(fā)表于 2025-3-26 21:50:20 | 只看該作者
https://doi.org/10.1007/978-1-4471-0471-1result of this process gives the insurer an estimated risk on the insured, which then determines the contract terms. The post-screening mechanism involves at least two contract periods whereby the second-period premium is increased if a loss event occurs during the first period..Prior work shows tha
32#
發(fā)表于 2025-3-27 04:29:44 | 只看該作者
33#
發(fā)表于 2025-3-27 06:30:43 | 只看該作者
34#
發(fā)表于 2025-3-27 09:51:25 | 只看該作者
35#
發(fā)表于 2025-3-27 14:28:25 | 只看該作者
Choosing Protection: User Investments in Security Measures for Cyber Risk Management,e different measures. Participants tended to invest preferably in the IDS, irrespective of the benefits from this investment. They were able to identify the firewall and insurance conditions in which investments were beneficial, but they did not invest optimally in these measures. The results imply
36#
發(fā)表于 2025-3-27 20:22:36 | 只看該作者
37#
發(fā)表于 2025-3-28 01:56:41 | 只看該作者
Realistic versus Rational Secret Sharing,g scenarios. In such circumstances the secret sharing scheme facilitates a power sharing agreement in the society. We also state that non-reconstruction may be beneficial for this society and give several examples.
38#
發(fā)表于 2025-3-28 05:32:59 | 只看該作者
Solving Cyber Alert Allocation Markov Games with Deep Reinforcement Learning,between sub-games. Due to the large sizes of the action and state spaces, we present a technique that uses deep neural networks in conjunction with Q-learning to derive near-optimal Nash strategies for both attacker and defender. We assess the effectiveness of these policies by comparing them to opt
39#
發(fā)表于 2025-3-28 07:05:48 | 只看該作者
Adaptive Honeypot Engagement Through Reinforcement Learning of Semi-Markov Decision Processes,ion. Meanwhile, the penetration probability is kept at a low level. The results show that the expected utility is robust against attackers of a large range of persistence and intelligence. Finally, we apply reinforcement learning to the SMDP to solve the .. Under a prudent choice of the learning rat
40#
發(fā)表于 2025-3-28 13:27:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克什克腾旗| 漳浦县| 澜沧| 腾冲县| 尉氏县| 西宁市| 赤壁市| 游戏| 商水县| 兰州市| 蒲城县| 高邮市| 孙吴县| 鄂伦春自治旗| 铁岭市| 探索| 吴堡县| 长宁县| 廉江市| 龙山县| 兴化市| 怀化市| 东城区| 安顺市| 旌德县| 岐山县| 江阴市| 贡嘎县| 德清县| 商洛市| 民和| 阳山县| 成都市| 青铜峡市| 伊金霍洛旗| 尖扎县| 胶南市| 武山县| 元阳县| 托克托县| 阜南县|