找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Decision Making with Spherical Fuzzy Sets; Theory and Applicati Cengiz Kahraman,Fatma Kutlu Gündo?du Book 2021 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: introspective
21#
發(fā)表于 2025-3-25 05:41:16 | 只看該作者
22#
發(fā)表于 2025-3-25 09:48:47 | 只看該作者
Big Data und die Frage nach der Anerkennungical fuzzy sets, operational laws for interval valued spherical fuzzy numbers and aggregation operators with their properties are proposed. Also, the proposed aggregation operators are applied in a decision making problem to choose the best station which scrutinizes the quality of air. A further com
23#
發(fā)表于 2025-3-25 12:36:28 | 只看該作者
A. Zaid,B. El-Korchi,H. J. Vissergation operators (SFNWBM), we present an approach to multi-criteria group-decision making problems under the spherical fuzzy environment, and to illustrate the validity of the novel aggregation operator, a practical example is provided.
24#
發(fā)表于 2025-3-25 16:53:42 | 只看該作者
Maiada M. El-Dawayati,Zeinab E. Zayedon is solved using SFVIKOR with the four implementations and the results are compared with the results of the spherical fuzzy technique of order preference by similarity to an ideal solution (SFTOPSIS). Then, the stability of the solution is examined under these different implementations.
25#
發(fā)表于 2025-3-25 20:25:16 | 只看該作者
26#
發(fā)表于 2025-3-26 02:20:38 | 只看該作者
27#
發(fā)表于 2025-3-26 06:18:17 | 只看該作者
28#
發(fā)表于 2025-3-26 09:30:04 | 只看該作者
Date Palm Nanofibres and Composites of the alternative energy exploitation projects, the weights of the criteria and the performance of the scenarios are crisp values. The results of the second example are compared with the results of the conventional PROMETHEE, the fuzzy PROMETHEE, the intuitionistic fuzzy PROMETHEE, and the Pythago
29#
發(fā)表于 2025-3-26 16:09:49 | 只看該作者
30#
發(fā)表于 2025-3-26 17:47:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固安县| 仲巴县| 文山县| 景谷| 合川市| 湖南省| 宜黄县| 洪泽县| 兴国县| 鄂托克旗| 周宁县| 胶州市| 贵阳市| 遂溪县| 合山市| 滁州市| 通辽市| 禄丰县| 鸡泽县| 张掖市| 仙桃市| 鄂伦春自治旗| 定远县| 吉隆县| 莲花县| 兰西县| 琼结县| 乳山市| 乌兰县| 广德县| 达日县| 泰安市| 黔江区| 灵台县| 土默特右旗| 大余县| 罗城| 高淳县| 米林县| 平度市| 鹿邑县|