找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Decidability of Logical Theories and Their Combination; Jo?o Rasga,Cristina Sernadas Textbook 2020 Springer Nature Switzerland AG 2020 Fir

[復(fù)制鏈接]
查看: 44728|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:13:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Decidability of Logical Theories and Their Combination
編輯Jo?o Rasga,Cristina Sernadas
視頻videohttp://file.papertrans.cn/265/264163/264163.mp4
概述Provides a comprehensive, self-contained introduction to decidability of first-order theories, using detailed proofs and examples to illustrate and clarify complex concepts.Incorporates computability
叢書名稱Studies in Universal Logic
圖書封面Titlebook: Decidability of Logical Theories and Their Combination;  Jo?o Rasga,Cristina Sernadas Textbook 2020 Springer Nature Switzerland AG 2020 Fir
描述This textbook provides a self-contained introduction to decidability of first-order theories and their combination. The technical material is presented in a systematic and universal way and illustrated with plenty of examples and a range of proposed exercises..After an overview of basic first-order logic concepts, the authors discuss some model-theoretic notions like embeddings, diagrams, and elementary substructures. The text then goes on to explore an applicable way to deduce logical consequences from a given theory and presents sufficient conditions for a theory to be decidable. The chapters that follow focus on quantifier elimination, decidability of the combination of first-order theories and the basics of computability theory.?.The inclusion of a chapter on Gentzen calculus, cut elimination, and Craig interpolation, as well as a chapter on combination of theories and preservation of decidability, help to set this volume apart from similar books in the field..Decidability of Logical Theories and their Combination.?is ideal for graduate students of Mathematics and is equally suitable for Computer Science, Philosophy and Physics students who are interested in gaining a deeper un
出版日期Textbook 2020
關(guān)鍵詞First-order logical theories; Decidability of first-order logical theories; Combination of first-order
版次1
doihttps://doi.org/10.1007/978-3-030-56554-1
isbn_softcover978-3-030-56556-5
isbn_ebook978-3-030-56554-1Series ISSN 2297-0282 Series E-ISSN 2297-0290
issn_series 2297-0282
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Decidability of Logical Theories and Their Combination影響因子(影響力)




書目名稱Decidability of Logical Theories and Their Combination影響因子(影響力)學(xué)科排名




書目名稱Decidability of Logical Theories and Their Combination網(wǎng)絡(luò)公開度




書目名稱Decidability of Logical Theories and Their Combination網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Decidability of Logical Theories and Their Combination被引頻次




書目名稱Decidability of Logical Theories and Their Combination被引頻次學(xué)科排名




書目名稱Decidability of Logical Theories and Their Combination年度引用




書目名稱Decidability of Logical Theories and Their Combination年度引用學(xué)科排名




書目名稱Decidability of Logical Theories and Their Combination讀者反饋




書目名稱Decidability of Logical Theories and Their Combination讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:31:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:50:02 | 只看該作者
Quantifier Elimination,imination to the problem of eliminating an existential quantifier over a quantifier-free formula. Capitalizing on this result, we illustrate how to constructively obtain a quantifier-free formula equivalent to a given formula by proving that the theory of algebraically closed fields has quantifier e
地板
發(fā)表于 2025-3-22 05:54:44 | 只看該作者
5#
發(fā)表于 2025-3-22 12:06:48 | 只看該作者
https://doi.org/10.1007/978-3-030-56554-1First-order logical theories; Decidability of first-order logical theories; Combination of first-order
6#
發(fā)表于 2025-3-22 14:32:07 | 只看該作者
978-3-030-56556-5Springer Nature Switzerland AG 2020
7#
發(fā)表于 2025-3-22 20:00:53 | 只看該作者
A. Melchiorri,C. Odman,P. Serraormulas and several technical maps and relations. Then, we review semantic concepts like interpretation structure, satisfaction and entailment, as well as useful results like the Lemma of the Closed Formula, the Lemma of Substitution and the Cardinality Theorem (the reader can find more information
8#
發(fā)表于 2025-3-23 00:09:33 | 只看該作者
https://doi.org/10.1007/978-3-540-44767-2ves for reasoning with theories are, namely, natural deduction and tableaux, see?[., .] and?[.], respectively) inspired by the presentation in?[.] and in?[.] (see also?[.]) and analyze how to use the calculus for reasoning with theories.?After proving some technical lemmas and providing several exam
9#
發(fā)表于 2025-3-23 04:37:44 | 只看該作者
10#
發(fā)表于 2025-3-23 06:40:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柘荣县| 温宿县| 高州市| 阜城县| 敦化市| 连州市| 黄平县| 砀山县| 安仁县| 虞城县| 宁陵县| 乌海市| 色达县| 施甸县| 娄底市| 丹东市| 崇明县| 饶阳县| 溆浦县| 搜索| 织金县| 巴林右旗| 定西市| 卫辉市| 北宁市| 广州市| 台东市| 青岛市| 北川| 蚌埠市| 洛南县| 封丘县| 奉节县| 怀来县| 枝江市| 许昌县| 普兰店市| 舟山市| 荣成市| 中方县| 呼和浩特市|