找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Decentralized Neural Control: Application to Robotics; Ramon Garcia-Hernandez,Michel Lopez-Franco,Jose A. Book 2017 Springer International

[復(fù)制鏈接]
查看: 51158|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:49:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Decentralized Neural Control: Application to Robotics
編輯Ramon Garcia-Hernandez,Michel Lopez-Franco,Jose A.
視頻videohttp://file.papertrans.cn/265/264149/264149.mp4
概述Presents recent research in decentralized neural control.Includes applications to robotics.Presents results in simulation and real time.Includes supplementary material:
叢書名稱Studies in Systems, Decision and Control
圖書封面Titlebook: Decentralized Neural Control: Application to Robotics;  Ramon Garcia-Hernandez,Michel Lopez-Franco,Jose A. Book 2017 Springer International
描述.This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors..This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF)..The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold..The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network..The thirdcontrol scheme applies a decentralized neural inverse optimal control for stabilization..The fourth decentralized neural inverse optimal control is designed for trajectory tracking..This comprehensive work on decentralized
出版日期Book 2017
關(guān)鍵詞Decentralized Neural Control; Robotics; Computational Intelligence; Intelligent Systems; Neural Control
版次1
doihttps://doi.org/10.1007/978-3-319-53312-4
isbn_softcover978-3-319-85123-5
isbn_ebook978-3-319-53312-4Series ISSN 2198-4182 Series E-ISSN 2198-4190
issn_series 2198-4182
copyrightSpringer International Publishing Switzerland 2017
The information of publication is updating

書目名稱Decentralized Neural Control: Application to Robotics影響因子(影響力)




書目名稱Decentralized Neural Control: Application to Robotics影響因子(影響力)學(xué)科排名




書目名稱Decentralized Neural Control: Application to Robotics網(wǎng)絡(luò)公開度




書目名稱Decentralized Neural Control: Application to Robotics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Decentralized Neural Control: Application to Robotics被引頻次




書目名稱Decentralized Neural Control: Application to Robotics被引頻次學(xué)科排名




書目名稱Decentralized Neural Control: Application to Robotics年度引用




書目名稱Decentralized Neural Control: Application to Robotics年度引用學(xué)科排名




書目名稱Decentralized Neural Control: Application to Robotics讀者反饋




書目名稱Decentralized Neural Control: Application to Robotics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:34:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:27:06 | 只看該作者
地板
發(fā)表于 2025-3-22 07:24:02 | 只看該作者
https://doi.org/10.1007/978-3-663-09553-8training algorithm for a modified recurrent high order neural network (RHONN), in order to identify the plant model. Based on this model, a control law is derived, which combines discrete-time block control and sliding mode techniques. The block control approach is used to design a nonlinear sliding
5#
發(fā)表于 2025-3-22 12:41:20 | 只看該作者
Schule und Rassismus in den USAng a suitable controller for each subsystem. Accordingly, each subsystem is approximated by an identifier using a discrete-time recurrent high order neural network (RHONN), trained with an extended Kalman filter (EKF) algorithm. The neural identifier scheme is used to model the uncertain nonlinear s
6#
發(fā)表于 2025-3-22 13:35:57 | 只看該作者
7#
發(fā)表于 2025-3-22 18:09:32 | 只看該作者
8#
發(fā)表于 2025-3-23 01:06:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:11:03 | 只看該作者
10#
發(fā)表于 2025-3-23 06:05:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽中县| 来宾市| 大埔区| 望江县| 广汉市| 苏尼特右旗| 青海省| 阿坝| 郓城县| 凤庆县| 延川县| 武功县| 安塞县| 普定县| 理塘县| 延津县| 沭阳县| 宁城县| 竹北市| 南充市| 浦城县| 乌审旗| 阳新县| 塔城市| 浠水县| 堆龙德庆县| 德化县| 巴林左旗| 延长县| 涿州市| 云安县| 井陉县| 常熟市| 金阳县| 易门县| 鹤庆县| 天祝| 吉林省| 舒城县| 平潭县| 绥棱县|