找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: De Rham Cohomology of Differential Modules on Algebraic Varieties; Yves André,Francesco Baldassarri Book 20011st edition Springer Basel AG

[復(fù)制鏈接]
查看: 49813|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:20:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties
編輯Yves André,Francesco Baldassarri
視頻videohttp://file.papertrans.cn/264/263891/263891.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: De Rham Cohomology of Differential Modules on Algebraic Varieties;  Yves André,Francesco Baldassarri Book 20011st edition Springer Basel AG
描述This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ- entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case
出版日期Book 20011st edition
關(guān)鍵詞Dimension; Divisor; Geometrie; Grad; algebra; algebraic geometry; algebraic varieties
版次1
doihttps://doi.org/10.1007/978-3-0348-8336-8
isbn_ebook978-3-0348-8336-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel AG 2001
The information of publication is updating

書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties影響因子(影響力)




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties影響因子(影響力)學(xué)科排名




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties網(wǎng)絡(luò)公開度




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties被引頻次




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties被引頻次學(xué)科排名




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties年度引用




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties年度引用學(xué)科排名




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties讀者反饋




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:17:21 | 只看該作者
0743-1643 t of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case978-3-0348-8336-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
地板
發(fā)表于 2025-3-22 06:36:32 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:33 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:18 | 只看該作者
7#
發(fā)表于 2025-3-22 19:40:26 | 只看該作者
De Rham Cohomology of Differential Modules on Algebraic Varieties978-3-0348-8336-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
8#
發(fā)表于 2025-3-22 22:16:08 | 只看該作者
https://doi.org/10.1007/978-3-031-31801-6sult is a particularly simple proof of the Grothendieck-Deligne comparison theorem (algebraic versus complex-analytic De Rham cohomology with regular coefficients [G1], [De]). As a corollary, we obtain an elementary proof of Riemann’s existence theorem for coverings, in higher dimensions.
9#
發(fā)表于 2025-3-23 03:23:57 | 只看該作者
https://doi.org/10.1007/978-3-031-31801-6The central topic of this chapter is the notion of regularity in several variables. For an algebraic integrable connection ? on the complement of a divisor Z in an algebraic variety.the notion of regularity along Z may be defined, or characterized, in at least four different algebraic ways:
10#
發(fā)表于 2025-3-23 07:27:09 | 只看該作者
https://doi.org/10.1007/978-3-031-31801-6In this chapter, we tackle the study of irregularity in several variables. This domain is far less explored than the island of regularity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大冶市| 龙里县| 克拉玛依市| 闽清县| 搜索| 定南县| 阜新市| 玉山县| 宾川县| 抚顺市| 德庆县| 阳江市| 玉树县| 承德县| 安国市| 景洪市| 大姚县| 荣昌县| 郑州市| 濉溪县| 白城市| 密云县| 宜丰县| 鄂伦春自治旗| 谢通门县| 上蔡县| 德惠市| 临西县| 东海县| 石家庄市| 浮山县| 望都县| 北碚区| 龙井市| 晋州市| 新化县| 航空| 嵊泗县| 桃园市| 田阳县| 墨玉县|