找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Databases Theory and Applications; 31st Australasian Da Renata Borovica-Gajic,Jianzhong Qi,Weiqing Wang Conference proceedings 2020 Springe

[復制鏈接]
樓主: 本義
51#
發(fā)表于 2025-3-30 11:46:45 | 只看該作者
Query-Oriented Temporal Active Intimate Community Searchdensely-connected as well as actively participate and have active temporal interactions among them with respect to the given query consisting of a set of query nodes (users) and a set of attributes. Experiments on real datasets demonstrate the effectiveness of our proposed approach.
52#
發(fā)表于 2025-3-30 15:58:07 | 只看該作者
0302-9743 and data analytics between researchers and practitioners from around the globe, particularly Australia, New Zealand and in the World..978-3-030-39468-4978-3-030-39469-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
53#
發(fā)表于 2025-3-30 19:23:31 | 只看該作者
Elena Lokhman,Srijana Rai,William Matthewsver deep neural networks. In particular, our proposed function interpolation models exhibit memory footprint two orders of magnitude smaller compared to neural network models, and 30–40% accuracy improvement over neural networks trained with the same amount of time, while keeping query time generally on-par with neural network models.
54#
發(fā)表于 2025-3-30 21:28:28 | 只看該作者
Coronaviruses and their Diseasesthree representative methods from different categories to reveal how matching model affects the performance. Besides, the experiments are conducted on multiple real datasets with different settings to demonstrate the influence of other factors in map-matching problem, like the trajectory quality, data compression and matching latency.
55#
發(fā)表于 2025-3-31 01:21:30 | 只看該作者
Function Interpolation for Learned Index Structuresver deep neural networks. In particular, our proposed function interpolation models exhibit memory footprint two orders of magnitude smaller compared to neural network models, and 30–40% accuracy improvement over neural networks trained with the same amount of time, while keeping query time generally on-par with neural network models.
56#
發(fā)表于 2025-3-31 06:52:37 | 只看該作者
57#
發(fā)表于 2025-3-31 12:46:12 | 只看該作者
58#
發(fā)表于 2025-3-31 17:23:38 | 只看該作者
59#
發(fā)表于 2025-3-31 21:00:14 | 只看該作者
Mariette F. Ducatez,Jean-Luc GuérinC can efficiently exploit the parallel computation advantages of GPU hardware for training, and further facilitate the gradient propagation. Extensive experiments on MS-COCO demonstrate that the proposed PAIC significantly reduces the training time, while achieving competitive performance compared to conventional RNN-based models.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
康定县| 佛坪县| 措勤县| 石门县| 廊坊市| 峨边| 策勒县| 崇左市| 友谊县| 白水县| 永昌县| 兴国县| 桂阳县| 威远县| 隆昌县| 定南县| 开原市| 榕江县| 南皮县| 芷江| 咸丰县| 赣州市| 盐池县| 乌审旗| 绥阳县| 呼和浩特市| 石家庄市| 克山县| 卢湾区| 宁化县| 神池县| 仙游县| 舒城县| 大庆市| 习水县| 恩平市| 寿宁县| 佛坪县| 清镇市| 东城区| 崇阳县|