找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Databases Theory and Applications; 31st Australasian Da Renata Borovica-Gajic,Jianzhong Qi,Weiqing Wang Conference proceedings 2020 Springe

[復制鏈接]
樓主: 本義
51#
發(fā)表于 2025-3-30 11:46:45 | 只看該作者
Query-Oriented Temporal Active Intimate Community Searchdensely-connected as well as actively participate and have active temporal interactions among them with respect to the given query consisting of a set of query nodes (users) and a set of attributes. Experiments on real datasets demonstrate the effectiveness of our proposed approach.
52#
發(fā)表于 2025-3-30 15:58:07 | 只看該作者
0302-9743 and data analytics between researchers and practitioners from around the globe, particularly Australia, New Zealand and in the World..978-3-030-39468-4978-3-030-39469-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
53#
發(fā)表于 2025-3-30 19:23:31 | 只看該作者
Elena Lokhman,Srijana Rai,William Matthewsver deep neural networks. In particular, our proposed function interpolation models exhibit memory footprint two orders of magnitude smaller compared to neural network models, and 30–40% accuracy improvement over neural networks trained with the same amount of time, while keeping query time generally on-par with neural network models.
54#
發(fā)表于 2025-3-30 21:28:28 | 只看該作者
Coronaviruses and their Diseasesthree representative methods from different categories to reveal how matching model affects the performance. Besides, the experiments are conducted on multiple real datasets with different settings to demonstrate the influence of other factors in map-matching problem, like the trajectory quality, data compression and matching latency.
55#
發(fā)表于 2025-3-31 01:21:30 | 只看該作者
Function Interpolation for Learned Index Structuresver deep neural networks. In particular, our proposed function interpolation models exhibit memory footprint two orders of magnitude smaller compared to neural network models, and 30–40% accuracy improvement over neural networks trained with the same amount of time, while keeping query time generally on-par with neural network models.
56#
發(fā)表于 2025-3-31 06:52:37 | 只看該作者
57#
發(fā)表于 2025-3-31 12:46:12 | 只看該作者
58#
發(fā)表于 2025-3-31 17:23:38 | 只看該作者
59#
發(fā)表于 2025-3-31 21:00:14 | 只看該作者
Mariette F. Ducatez,Jean-Luc GuérinC can efficiently exploit the parallel computation advantages of GPU hardware for training, and further facilitate the gradient propagation. Extensive experiments on MS-COCO demonstrate that the proposed PAIC significantly reduces the training time, while achieving competitive performance compared to conventional RNN-based models.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
锦屏县| 长顺县| 互助| 高淳县| 金门县| 松潘县| 获嘉县| 潼南县| 正镶白旗| 天长市| 万州区| 清水河县| 太和县| 峨眉山市| 无为县| 增城市| 敖汉旗| 沙洋县| 桦川县| 伊通| 柘城县| 镇康县| 汶上县| 集安市| 宁化县| 北宁市| 古田县| 彝良县| 布拖县| 宣武区| 紫阳县| 沧源| 怀宁县| 鹤山市| 崇仁县| 贵阳市| 吉首市| 巨鹿县| 固始县| 大余县| 固原市|