找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Databases Theory and Applications; 32nd Australasian Da Miao Qiao,Gottfried Vossen,Lei Li Conference proceedings 2021 Springer Nature Switz

[復制鏈接]
樓主: 無限
11#
發(fā)表于 2025-3-23 13:27:49 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:21 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:36 | 只看該作者
14#
發(fā)表于 2025-3-24 01:35:15 | 只看該作者
Experimental Analysis of Locality Sensitive Hashing Techniques for High-Dimensional Approximate Neats in their evaluation. In this experimental survey paper, we show the impact of both these costs on the overall performance. We compare three state-of-the-art techniques on six real-world datasets, and show the importance of comparing these costs to achieve a more fair comparison.
15#
發(fā)表于 2025-3-24 05:12:36 | 只看該作者
Twitter Data Modelling and Provenance Support for Key-Value Pair Databases,a Query-Driven approach. This framework provides efficient provenance capturing support for select, aggregate, update, and historical queries. We evaluate the performance of proposed framework in terms of provenance capturing and querying capabilities using appropriate query sets.
16#
發(fā)表于 2025-3-24 09:53:23 | 只看該作者
17#
發(fā)表于 2025-3-24 13:26:30 | 只看該作者
Adaptive Graph Learning for Semi-supervised Classification of GCNs,n hypergraph, sparse learning and adaptive graph are integrated into a framework. Finally, the suitable graph is obtained, which is inputted into GCN for semi-supervised learning. The experimental results of multi-type datasets show that our method is superior to other comparison algorithms in classification tasks.
18#
發(fā)表于 2025-3-24 14:49:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:39:52 | 只看該作者
Conference proceedings 2021s between researchers and practitioners from around the globe, particularly Australia and New Zealand. ADC shares novel research solutions to problems of todays information society that fullfil the needs of heterogeneous applications and environments and to identify new issues and directions for future research and development work..
20#
發(fā)表于 2025-3-24 23:15:02 | 只看該作者
Contextual Bandit Learning for Activity-Aware Things-of-Interest Recommendation in an Assisted Livied based on a contextual bandit approach to tackle dynamicity in human activity patterns for accurate recommendations meeting user needs without their feedback. Our experiment results demonstrate the feasibility and effectiveness of the proposed Reminder Care System in real-world IoT-based smart home applications.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
呼图壁县| 阿巴嘎旗| 望都县| 凤庆县| 拉孜县| 安平县| 磐石市| 万全县| 高阳县| 静海县| 沽源县| 民丰县| 平塘县| 清新县| 蒙山县| 醴陵市| 文登市| 晋城| 潼南县| 巨野县| 金昌市| 大埔县| 梁山县| 昌都县| 台州市| 民县| 施秉县| 晋中市| 淄博市| 崇礼县| 卢湾区| 彭山县| 长白| 蒙城县| 库尔勒市| 西乌珠穆沁旗| 共和县| 抚顺县| 将乐县| 哈尔滨市| 五华县|