找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 21st International C Shamkant B. Navathe,Weili Wu,Hui Xiong Conference proceedings 2016 Springe

[復制鏈接]
樓主: 漏出
41#
發(fā)表于 2025-3-28 16:42:09 | 只看該作者
https://doi.org/10.1007/978-1-349-86105-7among different semantic labels of locations, and enables more meaningful measures of semantic similarity among indoor trajectories. We conduct experiments on indoor trajectories, comparing our proposal with several popular methods. The results suggest that our proposal is effective and represents an improvement over existing methods.
42#
發(fā)表于 2025-3-28 21:18:17 | 只看該作者
43#
發(fā)表于 2025-3-28 22:55:59 | 只看該作者
STH-Bass: A Spatial-Temporal Heterogeneous Bass Model to Predict Single-Tweet Popularitycuracy of STH-Bass based on real-world Twitter data. The evaluation results show that STH-Bass obtains much less APE than the baselines when predicting the trend of a single tweet, and an average of 24?% higher . when classifying the tweets popularity.
44#
發(fā)表于 2025-3-29 05:46:46 | 只看該作者
Pre-computed Region Guardian Sets Based Reverse kNN Queriesat the results of a query . can be computed by using SLICE on only the objects in its guardian set instead of using the whole dataset. Our comprehensive experimental study on synthetic and real datasets demonstrates the proposed approach is the most efficient algorithm for R.NN.
45#
發(fā)表于 2025-3-29 07:34:55 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:05 | 只看該作者
Effective Similarity Search on Indoor Moving-Object Trajectoriesamong different semantic labels of locations, and enables more meaningful measures of semantic similarity among indoor trajectories. We conduct experiments on indoor trajectories, comparing our proposal with several popular methods. The results suggest that our proposal is effective and represents an improvement over existing methods.
47#
發(fā)表于 2025-3-29 16:18:56 | 只看該作者
48#
發(fā)表于 2025-3-29 22:30:40 | 只看該作者
49#
發(fā)表于 2025-3-30 03:47:51 | 只看該作者
Towards Neighborhood Window Analytics over Large-Scale Graphsover both real and synthetic datasets with hundreds of millions of vertices and edges show that our proposed solutions are four orders of magnitude faster in query performance than the non-index algorithm, and are superior over the state-of-the-art solution in terms of both scalability and efficiency.
50#
發(fā)表于 2025-3-30 05:24:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
玉溪市| 临漳县| 蓬溪县| 中山市| 大悟县| 涞源县| 马尔康县| 淳安县| 侯马市| 怀宁县| 长寿区| 云林县| 韶山市| 伊通| 梨树县| 博客| 山西省| 锡林浩特市| 宁夏| 乳源| 惠安县| 玛曲县| 伊金霍洛旗| 屏山县| 莎车县| 元朗区| 文安县| 卓资县| 萝北县| 林口县| 亳州市| 彝良县| 马尔康县| 改则县| 醴陵市| 南昌市| 黑河市| 伊通| 阿图什市| 武宣县| 新河县|