找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 26th International C Christian S. Jensen,Ee-Peng Lim,Chih-Ya Shen Conference proceedings 2021 T

[復(fù)制鏈接]
樓主: 投降
41#
發(fā)表于 2025-3-28 15:04:51 | 只看該作者
Multi-label Classification of Long Text Based on Key-Sentences Extractioned global feature information. Some approaches that split an entire text into multiple segments for feature extracting, which generates noise features of irrelevant segments. To address these issues, we introduce key-sentences extraction task with semi-supervised learning to quickly distinguish rele
42#
發(fā)表于 2025-3-28 21:41:51 | 只看該作者
Automated Context-Aware Phrase Mining from Text Corporatext into structured information. Existing statistic-based methods have achieved the state-of-the-art performance of this task. However, such methods often heavily rely on statistical signals to extract quality phrases, ignoring the effect of ...In this paper, we propose a novel context-aware method
43#
發(fā)表于 2025-3-28 23:48:09 | 只看該作者
Keyword-Aware Encoder for Abstractive Text Summarizationn summarizing a text. Fewer efforts are needed to write a high-quality summary if keywords in the original text are provided. Inspired by this observation, we propose a keyword-aware encoder (KAE) for abstractive text summarization, which extracts and exploits keywords explicitly. It enriches word r
44#
發(fā)表于 2025-3-29 05:04:38 | 只看該作者
Neural Adversarial Review Summarization with Hierarchical Personalized Attention and ignore different informativeness of different sentences in a review towards summary generation. In addition, the personalized information along with reviews (e.g., user/product and ratings) is also highly related to the quality of generated summaries. Hence, we propose a review summarization me
45#
發(fā)表于 2025-3-29 09:35:54 | 只看該作者
Generating Contextually Coherent Responses by Learning Structured Vectorized Semanticso appropriately encode contexts and how to make good use of them during the generation. Past works either directly use (hierarchical) RNN to encode contexts or use attention-based variants to further weight different words and utterances. They tend to learn dispersed focuses over all contextual info
46#
發(fā)表于 2025-3-29 12:28:55 | 只看該作者
47#
發(fā)表于 2025-3-29 19:03:35 | 只看該作者
48#
發(fā)表于 2025-3-29 22:28:43 | 只看該作者
49#
發(fā)表于 2025-3-30 00:33:08 | 只看該作者
Discriminant Mutual Information for Text Feature Selection because of high correlation between features; so, it is necessary to execute feature selection. In this paper, we propose a Discriminant Mutual Information (DMI) criterion to select features for text classification tasks. DMI measures the discriminant ability of features from two aspects. One is th
50#
發(fā)表于 2025-3-30 04:13:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 12:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马边| 永嘉县| 吉林省| 永丰县| 牙克石市| 靖西县| 迁西县| 沙田区| 海南省| 翁牛特旗| 双辽市| 高阳县| 鄂州市| 新昌县| 革吉县| 来凤县| 南宫市| 四川省| 托克逊县| 积石山| 商洛市| 金寨县| 台中县| 大足县| 贞丰县| 肇东市| 苏尼特右旗| 科技| 应用必备| 武强县| 裕民县| 西吉县| 太仓市| 罗城| 贺州市| 文昌市| 司法| 屯昌县| 潜山县| 富民县| 德阳市|