找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 26th International C Christian S. Jensen,Ee-Peng Lim,Chih-Ya Shen Conference proceedings 2021 T

[復(fù)制鏈接]
樓主: 投降
41#
發(fā)表于 2025-3-28 15:04:51 | 只看該作者
Multi-label Classification of Long Text Based on Key-Sentences Extractioned global feature information. Some approaches that split an entire text into multiple segments for feature extracting, which generates noise features of irrelevant segments. To address these issues, we introduce key-sentences extraction task with semi-supervised learning to quickly distinguish rele
42#
發(fā)表于 2025-3-28 21:41:51 | 只看該作者
Automated Context-Aware Phrase Mining from Text Corporatext into structured information. Existing statistic-based methods have achieved the state-of-the-art performance of this task. However, such methods often heavily rely on statistical signals to extract quality phrases, ignoring the effect of ...In this paper, we propose a novel context-aware method
43#
發(fā)表于 2025-3-28 23:48:09 | 只看該作者
Keyword-Aware Encoder for Abstractive Text Summarizationn summarizing a text. Fewer efforts are needed to write a high-quality summary if keywords in the original text are provided. Inspired by this observation, we propose a keyword-aware encoder (KAE) for abstractive text summarization, which extracts and exploits keywords explicitly. It enriches word r
44#
發(fā)表于 2025-3-29 05:04:38 | 只看該作者
Neural Adversarial Review Summarization with Hierarchical Personalized Attention and ignore different informativeness of different sentences in a review towards summary generation. In addition, the personalized information along with reviews (e.g., user/product and ratings) is also highly related to the quality of generated summaries. Hence, we propose a review summarization me
45#
發(fā)表于 2025-3-29 09:35:54 | 只看該作者
Generating Contextually Coherent Responses by Learning Structured Vectorized Semanticso appropriately encode contexts and how to make good use of them during the generation. Past works either directly use (hierarchical) RNN to encode contexts or use attention-based variants to further weight different words and utterances. They tend to learn dispersed focuses over all contextual info
46#
發(fā)表于 2025-3-29 12:28:55 | 只看該作者
47#
發(fā)表于 2025-3-29 19:03:35 | 只看該作者
48#
發(fā)表于 2025-3-29 22:28:43 | 只看該作者
49#
發(fā)表于 2025-3-30 00:33:08 | 只看該作者
Discriminant Mutual Information for Text Feature Selection because of high correlation between features; so, it is necessary to execute feature selection. In this paper, we propose a Discriminant Mutual Information (DMI) criterion to select features for text classification tasks. DMI measures the discriminant ability of features from two aspects. One is th
50#
發(fā)表于 2025-3-30 04:13:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 01:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦县| 达孜县| 高邮市| 民勤县| 仙桃市| 忻城县| 郴州市| 安徽省| 旅游| 岳阳县| 漠河县| 玉田县| 江油市| 大悟县| 昌吉市| 丹阳市| 郓城县| 浪卡子县| 井冈山市| 施秉县| 长治市| 上犹县| 思南县| 华坪县| 德令哈市| 祁连县| 玛多县| 荆州市| 郧西县| 苍山县| 宝应县| 班玛县| 峨眉山市| 石家庄市| 古交市| 色达县| 开平市| 山丹县| 土默特左旗| 吴川市| 军事|