找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 26th International C Christian S. Jensen,Ee-Peng Lim,Chih-Ya Shen Conference proceedings 2021 T

[復(fù)制鏈接]
樓主: panache
41#
發(fā)表于 2025-3-28 16:12:57 | 只看該作者
Gated Sequential Recommendation System with Social and Textual Information Under Dynamic Contextspapers leverage abundant data from heterogeneous information sources to grasp diverse preferences and improve overall accuracy. Some noticeable papers proposed to extract users’ preference from information along with ratings such as reviews or social relations. However, their combinations are genera
42#
發(fā)表于 2025-3-28 20:25:14 | 只看該作者
SRecGAN: Pairwise Adversarial Training for Sequential Recommendationectiveness for such a task by maximizing the margin between observed and unobserved interactions. However, there exist unobserved positive items that are very likely to be selected in the future. Treating those items as negative leads astray and poses a limitation to further exploiting its potential
43#
發(fā)表于 2025-3-29 01:55:23 | 只看該作者
SSRGAN: A Generative Adversarial Network for Streaming Sequential Recommendationonological order. Although a few streaming update strategies have been developed, they cannot be applied in sequential recommendation, because they can hardly capture the long-term user preference only by updating the model with random sampled new instances. Besides, some latent information is ignor
44#
發(fā)表于 2025-3-29 04:42:02 | 只看該作者
Topological Interpretable Multi-scale Sequential Recommendation, short or mid-term interest. The multi-scale modeling of user interest in an interpretable way poses a great challenge in sequential recommendation. Hence, we propose a topological data analysis based framework to model target items’ explicit dependency on previous items or item chunks with differe
45#
發(fā)表于 2025-3-29 08:50:55 | 只看該作者
46#
發(fā)表于 2025-3-29 14:34:12 | 只看該作者
Semi-supervised Factorization Machines for Review-Aware Recommendation when the interaction data is sparse. However, existing solutions to review-aware recommendation only focus on learning more informative features from reviews, yet ignore the insufficient number of training examples, resulting in limited performance improvements. To this end, we propose a co-trainin
47#
發(fā)表于 2025-3-29 17:10:48 | 只看該作者
48#
發(fā)表于 2025-3-29 23:23:31 | 只看該作者
49#
發(fā)表于 2025-3-30 02:19:19 | 只看該作者
Knowledge-Aware Hypergraph Neural Network for Recommender Systemsfiltering in recommender systems. However, most of the existing KG-based recommendation models suffer from the following drawbacks, i.e., insufficient modeling of high-order correlations among users, items, and entities, and simple aggregation strategies which fail to preserve the relational informa
50#
發(fā)表于 2025-3-30 06:58:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林芝县| 桑植县| 灯塔市| 余江县| 三台县| 兴国县| 延吉市| 建德市| 黄石市| 连平县| 曲松县| 蕲春县| 昌宁县| 沙雅县| 通州市| 如东县| 汾阳市| 九江县| 新邵县| 昌吉市| 酉阳| 黔西县| 灵璧县| 清镇市| 犍为县| 营山县| 大理市| 调兵山市| 吴川市| 汉沽区| 济南市| 吉隆县| 手机| 龙井市| 红安县| 大足县| 渭南市| 太白县| 定西市| 华阴市| 曲水县|