找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 26th International C Christian S. Jensen,Ee-Peng Lim,Chih-Ya Shen Conference proceedings 2021 T

[復(fù)制鏈接]
樓主: panache
21#
發(fā)表于 2025-3-25 04:16:59 | 只看該作者
Contemporary American Memoirs in Actionot reflect the realistic scenarios of visualization recommendation completely, a new benchmark for visualization recommendation is designed and constructed by collecting real public datasets. Extensive experiments on both the public benchmark and the new benchmark demonstrate that the VizGRank can b
22#
發(fā)表于 2025-3-25 08:23:11 | 只看該作者
Once Upon a Time in Performance Arttem for different users, which may limit the expressiveness and further improvement of the models. In this paper, we propose Deep User Representation Construction Model (DURCM) to construct user presentations in a more effective and robust way. Specially, different from existing item-item methods th
23#
發(fā)表于 2025-3-25 14:30:52 | 只看該作者
Elizabeth LeCompte and the Wooster Group before convolution to generate attention maps for adaptive feature refinement. Experiments on several public datasets verify the superiority of DiCGAN over several baselines in terms of top-. recommendation. Further more, our experimental results show that when the dataset is more large and sparse,
24#
發(fā)表于 2025-3-25 19:31:00 | 只看該作者
25#
發(fā)表于 2025-3-25 19:59:53 | 只看該作者
SRecGAN: Pairwise Adversarial Training for Sequential Recommendationmize their margin. This intense adversarial competition provides increasing learning difficulties and constantly pushes the boundaries of its performance. Extensive experiments on three real-world datasets demonstrate the superiority of our methods over some strong baselines and prove the effectiven
26#
發(fā)表于 2025-3-26 00:33:40 | 只看該作者
27#
發(fā)表于 2025-3-26 08:05:48 | 只看該作者
28#
發(fā)表于 2025-3-26 10:05:55 | 只看該作者
SANS: Setwise Attentional Neural Similarity Method for Few-Shot Recommendationaptive weight to emphasize the importance of few-shot users. We simulate the few-shot recommendation problem on three real-world datasets and extensive results show that SANS can outperform the state-of-the-art recommendation algorithms in few-shot recommendation.
29#
發(fā)表于 2025-3-26 15:01:17 | 只看該作者
Semi-supervised Factorization Machines for Review-Aware Recommendationwo predictors. Furthermore, to exploit unlabeled data safely, the labeling confidence is estimated through validating the influence of the labeling of unlabeled examples on the labeled ones. The final prediction is made by linearly blending the outputs of two predictors. Extensive experiments on thr
30#
發(fā)表于 2025-3-26 20:25:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德清县| 章丘市| 互助| 武城县| 浏阳市| 慈溪市| 凤山县| 禹州市| 达拉特旗| 九龙县| 红原县| 博湖县| 鄂温| 台东市| 陕西省| 定边县| 固始县| 松江区| 清苑县| 昌宁县| 达孜县| 济源市| 乌鲁木齐县| 威远县| 黑龙江省| 彰化市| 会同县| 探索| 濮阳县| 罗甸县| 瑞昌市| 聂拉木县| 龙门县| 博野县| 宣城市| 宜昌市| 巩义市| 茂名市| 丰都县| 仁布县| 秦皇岛市|