找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 28th International C Xin Wang,Maria Luisa Sapino,Hongzhi Yin Conference proceedings 2023 The Ed

[復(fù)制鏈接]
樓主: 難受
41#
發(fā)表于 2025-3-28 17:16:22 | 只看該作者
Long-Tailed Time Series Classification via?Feature Space Rebalancingced Contrastive Learning (BCL), which avoids excessive intra-class compaction of tail classes by introducing a balanced supervised contrastive loss with hierarchical prototypes, resulting in a balanced feature space and better generalization. From the data perspective, we explore the effectiveness o
42#
發(fā)表于 2025-3-28 22:37:27 | 只看該作者
43#
發(fā)表于 2025-3-29 01:09:09 | 只看該作者
44#
發(fā)表于 2025-3-29 05:30:20 | 只看該作者
45#
發(fā)表于 2025-3-29 10:39:39 | 只看該作者
GP-HLS: Gaussian Process-Based Unsupervised High-Level Semantics Representation Learning of?Multivare series. Moreover, to deal with the challenge of variable lengths of input subseries of multivariate time series, a temporal pyramid pooling (TPP) method is applied to construct input vectors with equal length. The experimental results show that our model has substantial advantages compared with ot
46#
發(fā)表于 2025-3-29 12:44:17 | 只看該作者
Towards Time-Series Key Points Detection Through Self-supervised Learning and Probability Compensatiith a higher generalization ability; 2) a joint loss function providing both dynamic focal adaptation and probability compensation by extreme value theory. Extensive experiments using both real-world and benchmark datasets are conducted. The results indicate that our method outperforms our rival met
47#
發(fā)表于 2025-3-29 17:36:39 | 只看該作者
SNN-AAD: Active Anomaly Detection Method for?Multivariate Time Series with?Sparse Neural Networkctive anomaly detection with the design of sample selection strategy and abnormal feature order generation algorithm, which extracts the important features of instances and reduce the cost of human intelligence. Experimental results on four real-life datasets show SNN-AAD has good detection performa
48#
發(fā)表于 2025-3-29 23:26:32 | 只看該作者
49#
發(fā)表于 2025-3-30 03:58:45 | 只看該作者
0302-9743 D consortium papers are included. The conference presents papers on subjects such as model, graph, learning, performance, knowledge, time, recommendation, representation, attention, prediction, and network..978-3-031-30636-5978-3-031-30637-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
50#
發(fā)表于 2025-3-30 06:43:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 威信县| 临泉县| 德州市| 札达县| 山阳县| 昌黎县| 分宜县| 峡江县| 万荣县| 乌拉特中旗| 琼海市| 镇安县| 松阳县| 靖西县| 安徽省| 五指山市| 松溪县| 房山区| 江津市| 延津县| 静乐县| 唐河县| 井冈山市| 易门县| 黑山县| 江川县| 宜兰市| 攀枝花市| 聂拉木县| 丰台区| 辉县市| 通城县| 靖州| 吉木乃县| 凭祥市| 清涧县| 通道| 鄂温| 孙吴县| 江油市|