找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 27th International C Arnab Bhattacharya,Janice Lee Mong Li,Rage Uday Ki Conference proceedings

[復(fù)制鏈接]
樓主: interleukins
11#
發(fā)表于 2025-3-23 09:53:45 | 只看該作者
12#
發(fā)表于 2025-3-23 17:49:19 | 只看該作者
HRG: A Hybrid Retrieval and Generation Model in Multi-turn Dialogues difficult to maintain the context consistency by using only a few previous turns of the dialogue indiscriminately. Except for the context information, we can retrieve additional candidates from historical contexts, according to semantic similarity. Therefore, in this paper, we integrate the histor
13#
發(fā)表于 2025-3-23 21:55:48 | 只看該作者
: A Faithful Contrastive Framework for?Response Generation in?TableQA Systems. Due to the complex syntax of SQL and matching issues with table content, this task is prone to produce factual errors. In this paper, we propose ., a .ithfu. .trastive generation framework to improve the factual correctness of generated responses. . forces the generation model to identify examples
14#
發(fā)表于 2025-3-24 01:16:14 | 只看該作者
15#
發(fā)表于 2025-3-24 03:06:34 | 只看該作者
SimEmotion: A Simple Knowledgeable Prompt Tuning Method for Image Emotion Classificationsification are primarily based on proposing new architectures and fine-tuning them on pre-trained Convolutional Neural Networks. Recently, learning transferable visual models from natural language supervision has shown great success in zero-shot settings due to the easily accessible web-scale traini
16#
發(fā)表于 2025-3-24 10:34:21 | 只看該作者
Predicting Rumor Veracity on Social Media with Graph Structured Multi-task Learning but the shared layers in multi-task learning tend to yield a compromise between the general and the task-specific representation of structural information. To address this issue, we propose a novel .ulti-.ask .earning framework with .hared .ulti-channel .nteractions (MTL-SMI), which is composed of
17#
發(fā)表于 2025-3-24 11:00:18 | 只看該作者
Knowing What I Don’t Know: A Generation Assisted Rejection Framework in Knowledge Base Question Answty, some recent research works introduce external text for KBQA. However, such external information is not always readily available. We argue that it is critical for a KBQA system to know whether it lacks the knowledge to answer a given question. In this paper, we present a novel .neration .ssisted
18#
發(fā)表于 2025-3-24 17:49:08 | 只看該作者
19#
發(fā)表于 2025-3-24 18:59:25 | 只看該作者
20#
發(fā)表于 2025-3-25 00:39:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明溪县| 古蔺县| 新邵县| 高唐县| 闽清县| 子洲县| 鄂伦春自治旗| 楚雄市| 阿合奇县| 上杭县| 怀集县| 杂多县| 玛多县| 湖北省| 黎川县| 宿迁市| 宁陕县| 马关县| 宁乡县| 凉城县| 新营市| 三亚市| 桦南县| 昂仁县| 兴隆县| 西充县| 缙云县| 永年县| 鹤峰县| 台东市| 南皮县| 大悟县| 三台县| 丽江市| 延吉市| 泸水县| 新竹市| 阿勒泰市| 巴里| 明溪县| 宝山区|