找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Marketing; Analyzing and Managi Robert C. Blattberg,Byung-Do Kim,Scott A. Neslin Textbook 2008 Springer-Verlag New York 2008 CEO.D

[復(fù)制鏈接]
樓主: 挑染
31#
發(fā)表于 2025-3-26 21:49:03 | 只看該作者
Customer Lifetime Value: Fundamentalso the firm. This chapter focuses on the fundamental methods for calculating lifetime value, centering on “simple retention models” and “migration models.” We present a general approach to calculating LTV using these models, and illustrate with specific examples. We also discuss the particular case o
32#
發(fā)表于 2025-3-27 01:10:58 | 只看該作者
33#
發(fā)表于 2025-3-27 06:16:22 | 只看該作者
Customer Lifetime Value Applicationsions can LTV provide answers that traditional marketing analyses can not? This chapter will provide some answers to these questions. We will discuss how LTV models can be used in the real-world and describe some applications from the literature.
34#
發(fā)表于 2025-3-27 12:17:02 | 只看該作者
35#
發(fā)表于 2025-3-27 16:49:57 | 只看該作者
36#
發(fā)表于 2025-3-27 19:57:51 | 只看該作者
37#
發(fā)表于 2025-3-27 22:50:08 | 只看該作者
Statistical Issues in Predictive Modelingment of missing data, and evaluation of models. Topics covered include stepwise selection and principal components methods of variable selection; imputation methods, missing variable dummies, and data fusion techniques for missing data; and validation techniques and metrics for evaluating predictive
38#
發(fā)表于 2025-3-28 05:47:01 | 只看該作者
39#
發(fā)表于 2025-3-28 07:30:11 | 只看該作者
Market Basket Analysis or promoted together. The term arises from the shopping carts supermarket shoppers fill up during a shopping trip. The rise of the Internet has provided an entirely new venue for compiling and analyzing such data. This chapter discusses the key concepts of “confidence,” “support,” and “l(fā)ift” as app
40#
發(fā)表于 2025-3-28 11:32:17 | 只看該作者
Collaborative Filtering for “recommendation engines.” We discuss the two major forms of collaborative filtering: memory-based and model-based. The classic memorybased method is “nearest neighbor,” where predictions of a target customer‘s preferences for a target product are based on customers who appear to have similar ta
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦屏县| 什邡市| 武川县| 高唐县| 伽师县| 日照市| 绥宁县| 阿坝县| 雷波县| 湖北省| 江陵县| 万载县| 龙海市| 讷河市| 凉山| 从江县| 凤阳县| 南涧| 沅江市| 垣曲县| 六枝特区| 河曲县| 泾川县| 舟山市| 沧州市| 祁东县| 额济纳旗| 都江堰市| 铁岭县| 阿瓦提县| 和龙市| 白银市| 宜兴市| 北海市| 泽普县| 犍为县| 特克斯县| 彝良县| 渝北区| 广南县| 南澳县|