找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-intensive Systems; Principles and Funda Tomasz Wiktorski Book 2019 The Author(s), under exclusive license to Springer Nature Switzerla

[復(fù)制鏈接]
樓主: 毛發(fā)
11#
發(fā)表于 2025-3-23 11:31:36 | 只看該作者
https://doi.org/10.1007/978-1-349-07069-5rimarily focus on the two main components: Hadoop Distributed File System (HDFS) and MapReduce (MR). These two components provide the basic Hadoop functionality that most other elements rely on. I will also shortly cover other components, mostly to provide you with a basis for further independent exploration.
12#
發(fā)表于 2025-3-23 14:13:43 | 只看該作者
Social and Environmental FactorsData-intensive systems are a technological building block supporting Big Data and Data Science applications. Rapid emergence of these systems is driving the development of new books and courses to provide education in the techniques and technologies needed to extract knowledge from large datasets.
13#
發(fā)表于 2025-3-23 20:28:42 | 只看該作者
14#
發(fā)表于 2025-3-23 22:33:58 | 只看該作者
15#
發(fā)表于 2025-3-24 05:01:46 | 只看該作者
Preface,Data-intensive systems are a technological building block supporting Big Data and Data Science applications. Rapid emergence of these systems is driving the development of new books and courses to provide education in the techniques and technologies needed to extract knowledge from large datasets.
16#
發(fā)表于 2025-3-24 09:03:43 | 只看該作者
17#
發(fā)表于 2025-3-24 14:14:14 | 只看該作者
MapReduce Algorithms and Patterns,In this chapter, I will show you a few examples of the most common types of MapReduce patterns and algorithms. They will guide your thinking on how to encode typical operations in a MapReduce way. This should guide you in a way you think about your own coding challenges.
18#
發(fā)表于 2025-3-24 17:27:38 | 只看該作者
Introduction,and grow very fast. I also explain hardware trends that drive a need for new paradigms for data processing, which lead to new data processing systems—Data-Intensive Systems. These systems are an essential building block in Data Science application.
19#
發(fā)表于 2025-3-24 19:25:57 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绍兴市| 儋州市| 盘锦市| 桃园县| 新乡县| 吉隆县| 九江县| 凤翔县| 凯里市| 德昌县| 潜山县| 宁武县| 西昌市| 铜山县| 额敏县| 屯门区| 揭东县| 河津市| 黄龙县| 东至县| 礼泉县| 肇州县| 呼和浩特市| 武陟县| 娱乐| 江华| 宁武县| 信宜市| 伊宁市| 清远市| 磐石市| 黄梅县| 仁怀市| 邵武市| 方山县| 蒙阴县| 井研县| 平谷区| 嘉善县| 松溪县| 庆元县|