找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Intensive Workflow Management; Daniel C. M. Oliveira,Ji Liu,Esther Pacitti Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
樓主: fumble
21#
發(fā)表于 2025-3-25 05:31:31 | 只看該作者
22#
發(fā)表于 2025-3-25 07:50:15 | 只看該作者
23#
發(fā)表于 2025-3-25 13:44:26 | 只看該作者
24#
發(fā)表于 2025-3-25 16:27:45 | 只看該作者
Background Knowledge, a Directed Acyclic Graph (DAG). As more and more data is consumed and produced in modern scientific experiments, workflows need to be executed in parallel in distributed environments, e.g., clusters, grids, and clouds, in order to process large-scale data in a timely manner.
25#
發(fā)表于 2025-3-25 19:58:18 | 只看該作者
https://doi.org/10.1007/978-3-319-07839-7much time and money, it is fundamental to achieve multi-objectives, i.e., reducing both execution time and financial cost when scheduling the activations to the virtual machines that are part of the virtual cluster.
26#
發(fā)表于 2025-3-26 00:09:52 | 只看該作者
Book 2019 employed in many domains of science such as bioinformatics, astronomy, and engineering. Such workflows usually present a considerable number of activities and activations (i.e., tasks associated with activities) and may need a long time for execution. Due to the continuous need to store and process
27#
發(fā)表于 2025-3-26 06:04:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:32:18 | 只看該作者
Concise Dictionary of Engineeringiments [Deelman et al., 2009, Hey et al., 2009, 2012, Mattoso et al., 2010]: experiments that are based on complex computer simulations that perform a series ofdata transformations, i.e., . experiments.
29#
發(fā)表于 2025-3-26 15:26:52 | 只看該作者
https://doi.org/10.1007/978-3-319-07839-7 a Directed Acyclic Graph (DAG). As more and more data is consumed and produced in modern scientific experiments, workflows need to be executed in parallel in distributed environments, e.g., clusters, grids, and clouds, in order to process large-scale data in a timely manner.
30#
發(fā)表于 2025-3-26 17:57:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔江区| 临高县| 长岭县| 克什克腾旗| 金乡县| 道真| 临夏县| 盐亭县| 三门峡市| 日照市| 科尔| 孝昌县| 鄂托克旗| 武清区| 确山县| 玉树县| 泰兴市| 马山县| 镇原县| 兴城市| 瑞昌市| 盱眙县| 永新县| 宾阳县| 余庆县| 岚皋县| 读书| 秦安县| 青龙| 武威市| 卓尼县| 宜川县| 永登县| 思南县| 澄江县| 凌海市| 瑞安市| 盱眙县| 融水| 青神县| 思南县|