找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Prediction for Industrial Processes and Their Applications; Jun Zhao,Wei Wang,Chunyang Sheng Book 2018 Springer International

[復(fù)制鏈接]
樓主: 使固定
41#
發(fā)表于 2025-3-28 14:45:45 | 只看該作者
Reply: Cobb on Ultimate Realityed parameter optimization and estimation methods, such as the gradient-based methods (e.g., gradient descend, Newton method, and conjugate gradient method) and the intelligent optimization ones (e.g., genetic algorithm, differential evolution algorithm, and particle swarm optimization). In particula
42#
發(fā)表于 2025-3-28 22:12:19 | 只看該作者
https://doi.org/10.1007/978-1-349-20327-7ce a production process usually requires real-time responses. The commonly used method to accelerate the training process is to develop a parallel computing framework. In literature, two kinds of popular methods speeding up the training involves the one with a computer equipped with graphics process
43#
發(fā)表于 2025-3-29 02:49:45 | 只看該作者
https://doi.org/10.1007/978-1-349-20327-7ted to the optimal scheduling for energy system in steel industry based on the prediction outcomes. As for the by-product gas scheduling problem, a two-stage scheduling method is introduced here. On the prediction stage, the states of the optimized objectives, the consumption of the outsourcing natu
44#
發(fā)表于 2025-3-29 04:22:17 | 只看該作者
Data-Driven Prediction for Industrial Processes and Their Applications978-3-319-94051-9Series ISSN 2510-1528 Series E-ISSN 2510-1536
45#
發(fā)表于 2025-3-29 09:39:59 | 只看該作者
https://doi.org/10.1007/978-3-319-94051-9industrial time series prediction; prediction intervals for industrial data; long term prediction for
46#
發(fā)表于 2025-3-29 12:57:16 | 只看該作者
978-3-030-06785-4Springer International Publishing AG, part of Springer Nature 2018
47#
發(fā)表于 2025-3-29 15:51:41 | 只看該作者
48#
發(fā)表于 2025-3-29 22:11:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安塞县| 鄄城县| 乌拉特后旗| 曲周县| 崇仁县| 茂名市| 湖州市| 锡林浩特市| 甘孜| 张掖市| 简阳市| 绥芬河市| 时尚| 吉安市| 介休市| 祥云县| 峡江县| 福海县| 淅川县| 温州市| 射洪县| 阜新| 夹江县| 清涧县| 鄯善县| 柞水县| 大名县| 萨迦县| 固阳县| 浦东新区| 江源县| 河源市| 苍溪县| 湘潭市| 潜江市| 封开县| 元谋县| 城步| 横山县| 呈贡县| 祁阳县|