找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Fault Detection for Industrial Processes; Canonical Correlatio Zhiwen Chen Book 2017 Springer Fachmedien Wiesbaden GmbH 2017 Mu

[復制鏈接]
查看: 26268|回復: 44
樓主
發(fā)表于 2025-3-21 16:20:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data-Driven Fault Detection for Industrial Processes
副標題Canonical Correlatio
編輯Zhiwen Chen
視頻videohttp://file.papertrans.cn/264/263295/263295.mp4
概述Publication in the field of technical sciences
圖書封面Titlebook: Data-Driven Fault Detection for Industrial Processes; Canonical Correlatio Zhiwen Chen Book 2017 Springer Fachmedien Wiesbaden GmbH 2017 Mu
描述.Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed..
出版日期Book 2017
關鍵詞Multivariate statistical process monitoring; Performance evaluation; Data-Driven method; Subspace metho
版次1
doihttps://doi.org/10.1007/978-3-658-16756-1
isbn_softcover978-3-658-16755-4
isbn_ebook978-3-658-16756-1
copyrightSpringer Fachmedien Wiesbaden GmbH 2017
The information of publication is updating

書目名稱Data-Driven Fault Detection for Industrial Processes影響因子(影響力)




書目名稱Data-Driven Fault Detection for Industrial Processes影響因子(影響力)學科排名




書目名稱Data-Driven Fault Detection for Industrial Processes網絡公開度




書目名稱Data-Driven Fault Detection for Industrial Processes網絡公開度學科排名




書目名稱Data-Driven Fault Detection for Industrial Processes被引頻次




書目名稱Data-Driven Fault Detection for Industrial Processes被引頻次學科排名




書目名稱Data-Driven Fault Detection for Industrial Processes年度引用




書目名稱Data-Driven Fault Detection for Industrial Processes年度引用學科排名




書目名稱Data-Driven Fault Detection for Industrial Processes讀者反饋




書目名稱Data-Driven Fault Detection for Industrial Processes讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:20:47 | 只看該作者
https://doi.org/10.1007/978-3-031-49193-1ul implementations have been reported [40, 89, 125], the existing data-driven FD methods pay often less attention to deterministic disturbances. Recently, Luo . [75] proposed a data-driven FD approach for static processes with deterministic disturbances.
板凳
發(fā)表于 2025-3-22 01:21:44 | 只看該作者
地板
發(fā)表于 2025-3-22 08:00:56 | 只看該作者
5#
發(fā)表于 2025-3-22 10:17:51 | 只看該作者
New Results for Network Pollution GamesAdditive faults normally represent changes such as an abrupt increase in feed or a biased sensor, while multiplicative faults usually refer to changes, like variation in system parameters and variance of measurement noise [10, 16, 25, 90].
6#
發(fā)表于 2025-3-22 13:12:57 | 只看該作者
7#
發(fā)表于 2025-3-22 20:03:28 | 只看該作者
Occluded Face Recognition with Deep LearningIn this dissertation, the evaluation and comparison of two basic detection statistics for data-driven FD methods have been carried out, and advanced data-driven FD methods have been developed for complex industrial processes.
8#
發(fā)表于 2025-3-22 22:34:00 | 只看該作者
Improved CCA-based Fault Detection Methods,Additive faults normally represent changes such as an abrupt increase in feed or a biased sensor, while multiplicative faults usually refer to changes, like variation in system parameters and variance of measurement noise [10, 16, 25, 90].
9#
發(fā)表于 2025-3-23 03:41:33 | 只看該作者
10#
發(fā)表于 2025-3-23 06:00:51 | 只看該作者
Conclusions and Future Work,In this dissertation, the evaluation and comparison of two basic detection statistics for data-driven FD methods have been carried out, and advanced data-driven FD methods have been developed for complex industrial processes.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-19 10:42
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丰顺县| 安塞县| 新兴县| 潜山县| 工布江达县| 徐汇区| 壤塘县| 东阳市| 阳西县| 自贡市| 灵台县| 昌吉市| 德钦县| 丹寨县| 钟祥市| 调兵山市| 大同县| 景宁| 牟定县| 茌平县| 岐山县| 克什克腾旗| 米易县| 乌什县| 海淀区| 鹤山市| 江口县| 饶河县| 涞水县| 扶沟县| 丹巴县| 西乡县| 农安县| 康乐县| 锦州市| 安吉县| 通许县| 子长县| 泸西县| 江源县| 河津市|