找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data and Applications Security and Privacy XXXVII; 37th Annual IFIP WG Vijayalakshmi Atluri,Anna Lisa Ferrara Conference proceedings 2023

[復制鏈接]
樓主: Addiction
41#
發(fā)表于 2025-3-28 15:32:59 | 只看該作者
Impact of?Using a?Privacy Model on?Smart Buildings Data for?CO, Predictionor worse than others; also, the temporal dimension was particularly sensitive, with scores decreasing up to . between the original and the transformed data. This shows the effect of different levels of data privacy on the data utility of IoT applications, and can also help to identify which paramete
42#
發(fā)表于 2025-3-28 21:16:28 | 只看該作者
Digital Twins for?IoT Security Managementof concept to demonstrate the practical applicability of this approach for four different security use cases. Our results provide a starting point for further research to leverage digital twins for IoT security management.
43#
發(fā)表于 2025-3-28 23:42:21 | 只看該作者
Data Distribution Impact on?Preserving Privacy in?Centralized and?Decentralized Learning Learning (DILDP-FL). DILDP-FL is based on the distribution-invariant privatization method known as DIP. It transforms and perturbs the data while employing suitable transformations to achieve query results similar to those obtained from the original data. Our experimental findings demonstrate that
44#
發(fā)表于 2025-3-29 06:15:35 | 只看該作者
45#
發(fā)表于 2025-3-29 10:03:57 | 只看該作者
46#
發(fā)表于 2025-3-29 11:31:10 | 只看該作者
47#
發(fā)表于 2025-3-29 18:35:29 | 只看該作者
Data and Applications Security and Privacy XXXVII978-3-031-37586-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
48#
發(fā)表于 2025-3-29 22:44:40 | 只看該作者
https://doi.org/10.1007/978-3-540-47590-3 With LDP, users can perturb their data on their devices before sending it out for analysis. However, as the collection of multiple sensitive information becomes more prevalent across various industries, collecting a single sensitive attribute under LDP may not be sufficient. Correlated attributes i
49#
發(fā)表于 2025-3-30 00:20:48 | 只看該作者
50#
發(fā)表于 2025-3-30 06:53:07 | 只看該作者
Japan Association for‘Chemical Innovationesence information of a particular individual could be revealed from the statistics obtained in large-scale genomic analyses. Existing methods for releasing genome statistics under differential privacy do not prevent the leakage of personal information by untrusted data collectors. In addition, the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
百色市| 新闻| 吉林省| 左贡县| 扬中市| 田东县| 磐安县| 崇礼县| 墨玉县| 柳河县| 郧西县| 花垣县| 成安县| 永平县| 岳西县| 凌海市| 岐山县| 乌恰县| 赫章县| 沾化县| 正宁县| 吉林市| 美姑县| 离岛区| 法库县| 阳谷县| 瓮安县| 集贤县| 桃江县| 赫章县| 大方县| 湘潭县| 雅江县| 平昌县| 台南市| 贡山| 永嘉县| 成武县| 隆回县| 德化县| 祁门县|