找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data and Applications Security and Privacy XXXVII; 37th Annual IFIP WG Vijayalakshmi Atluri,Anna Lisa Ferrara Conference proceedings 2023

[復(fù)制鏈接]
樓主: Addiction
41#
發(fā)表于 2025-3-28 15:32:59 | 只看該作者
Impact of?Using a?Privacy Model on?Smart Buildings Data for?CO, Predictionor worse than others; also, the temporal dimension was particularly sensitive, with scores decreasing up to . between the original and the transformed data. This shows the effect of different levels of data privacy on the data utility of IoT applications, and can also help to identify which paramete
42#
發(fā)表于 2025-3-28 21:16:28 | 只看該作者
Digital Twins for?IoT Security Managementof concept to demonstrate the practical applicability of this approach for four different security use cases. Our results provide a starting point for further research to leverage digital twins for IoT security management.
43#
發(fā)表于 2025-3-28 23:42:21 | 只看該作者
Data Distribution Impact on?Preserving Privacy in?Centralized and?Decentralized Learning Learning (DILDP-FL). DILDP-FL is based on the distribution-invariant privatization method known as DIP. It transforms and perturbs the data while employing suitable transformations to achieve query results similar to those obtained from the original data. Our experimental findings demonstrate that
44#
發(fā)表于 2025-3-29 06:15:35 | 只看該作者
45#
發(fā)表于 2025-3-29 10:03:57 | 只看該作者
46#
發(fā)表于 2025-3-29 11:31:10 | 只看該作者
47#
發(fā)表于 2025-3-29 18:35:29 | 只看該作者
Data and Applications Security and Privacy XXXVII978-3-031-37586-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
48#
發(fā)表于 2025-3-29 22:44:40 | 只看該作者
https://doi.org/10.1007/978-3-540-47590-3 With LDP, users can perturb their data on their devices before sending it out for analysis. However, as the collection of multiple sensitive information becomes more prevalent across various industries, collecting a single sensitive attribute under LDP may not be sufficient. Correlated attributes i
49#
發(fā)表于 2025-3-30 00:20:48 | 只看該作者
50#
發(fā)表于 2025-3-30 06:53:07 | 只看該作者
Japan Association for‘Chemical Innovationesence information of a particular individual could be revealed from the statistics obtained in large-scale genomic analyses. Existing methods for releasing genome statistics under differential privacy do not prevent the leakage of personal information by untrusted data collectors. In addition, the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东光县| 桦南县| 靖远县| 涪陵区| 白银市| 康定县| 获嘉县| 赣州市| 莱芜市| 前郭尔| 五常市| 德庆县| 汽车| 新安县| 吉木萨尔县| 乐亭县| 河南省| 米泉市| 朝阳县| 永春县| 周口市| 丰城市| 六安市| 扬州市| 图片| 钦州市| 肇庆市| 通榆县| 湖州市| 大城县| 阳城县| 大港区| 北川| 辉县市| 杭锦旗| 湾仔区| 仪征市| 荆门市| 水富县| 烟台市| 双江|