找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Wrangling with R; Bradley C. Boehmke, Ph.D. Book 2016 Springer International Publishing Switzerland 2016 R.data wrangling.data struct

[復(fù)制鏈接]
查看: 34328|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:46:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Wrangling with R
編輯Bradley C. Boehmke, Ph.D.
視頻videohttp://file.papertrans.cn/264/263217/263217.mp4
概述Presents techniques that allow users to spend less time obtaining, cleaning, manipulating, and preprocessing data and more time visualizing, analyzing, and presenting data via a step-by-step tutorial
叢書名稱Use R!
圖書封面Titlebook: Data Wrangling with R;  Bradley C. Boehmke, Ph.D. Book 2016 Springer International Publishing Switzerland 2016 R.data wrangling.data struct
描述.This guide for practicing statisticians, data scientists, and R users and programmers will teach the essentials of preprocessing: data leveraging the R programming language to easily and quickly turn noisy data into usable pieces of information. Data wrangling, which is also commonly referred to as data munging, transformation, manipulation, janitor work, etc., can be a painstakingly laborious process. Roughly 80% of data analysis is spent on cleaning and preparing data; however, being a prerequisite to the rest of the data analysis workflow (visualization, analysis, reporting), it is essential that one become fluent and efficient in data wrangling techniques..This book will guide the user through the data wrangling process via a step-by-step tutorial approach and provide a solid foundation for working with data in R. The author‘s goal is to teach the user how to easily wrangle data in order to spend more time on understanding the content of the data. By the end of the book, the user will have learned:?.How to work with different types of data such as numerics, characters, regular expressions, factors, and dates.The difference between different data structures and how to create, a
出版日期Book 2016
關(guān)鍵詞R; data wrangling; data structures; dplyr; tidyr; importing; scraping; exporting; coding; data frames; data ma
版次1
doihttps://doi.org/10.1007/978-3-319-45599-0
isbn_softcover978-3-319-45598-3
isbn_ebook978-3-319-45599-0Series ISSN 2197-5736 Series E-ISSN 2197-5744
issn_series 2197-5736
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Data Wrangling with R影響因子(影響力)




書目名稱Data Wrangling with R影響因子(影響力)學(xué)科排名




書目名稱Data Wrangling with R網(wǎng)絡(luò)公開度




書目名稱Data Wrangling with R網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Wrangling with R被引頻次




書目名稱Data Wrangling with R被引頻次學(xué)科排名




書目名稱Data Wrangling with R年度引用




書目名稱Data Wrangling with R年度引用學(xué)科排名




書目名稱Data Wrangling with R讀者反饋




書目名稱Data Wrangling with R讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:36:22 | 只看該作者
978-3-319-45598-3Springer International Publishing Switzerland 2016
板凳
發(fā)表于 2025-3-22 02:00:34 | 只看該作者
Maryam Chinipardaz,Mehdi DehghanIn this chapter you will learn the basics of working with numbers in R. This includes understanding how to manage the numeric type (integer vs. double), the different ways of generating non-random and random numbers, how to set seed values for reproducible random number generation, and the different ways to compare and round numeric values.
地板
發(fā)表于 2025-3-22 05:49:39 | 只看該作者
5#
發(fā)表于 2025-3-22 11:15:41 | 只看該作者
6#
發(fā)表于 2025-3-22 13:27:47 | 只看該作者
Dealing with NumbersIn this chapter you will learn the basics of working with numbers in R. This includes understanding how to manage the numeric type (integer vs. double), the different ways of generating non-random and random numbers, how to set seed values for reproducible random number generation, and the different ways to compare and round numeric values.
7#
發(fā)表于 2025-3-22 17:30:37 | 只看該作者
Data Structure BasicsPrior to jumping into the data structures, it’s beneficial to understand two components of data structures - the structure and attributes.
8#
發(fā)表于 2025-3-22 23:50:34 | 只看該作者
Dealing with Missing ValuesA common task in data analysis is dealing with missing values. In R, missing values are often represented by . or some other value that represents missing values (i.e. .). We can easily work with missing values and in this chapter I illustrate how to test for, recode, and exclude missing values in your data.
9#
發(fā)表于 2025-3-23 04:47:33 | 只看該作者
https://doi.org/10.1007/978-3-319-59767-6 In spite of advances in technologies for working with data, analysts still spend an inordinate amount of time obtaining data, diagnosing data quality issues and pre-processing data into a usable form. Research has illustrated that this portion of the data analysis process is the most tedious and ti
10#
發(fā)表于 2025-3-23 09:15:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
亚东县| 青川县| 抚顺市| 邯郸县| 长白| 府谷县| 九龙县| 象山县| 江门市| 墨竹工卡县| 枝江市| 大渡口区| 民乐县| 黑水县| 深泽县| 山东| 安岳县| 北流市| 衡东县| 商都县| 岑巩县| 犍为县| 田阳县| 广宗县| 遂溪县| 沧州市| 大安市| 平远县| 普兰县| 彰武县| 祁阳县| 扬中市| 托克逊县| 霞浦县| 若羌县| 青海省| 孟州市| 河源市| 新丰县| 清镇市| 都匀市|