找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Teams; A Unified Management Jesse Anderson Book 2020 Jesse Anderson 2020 data.Big Data.Data Science.Data Scientist.Data Engineering.Da

[復(fù)制鏈接]
查看: 24963|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:34:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Teams
副標(biāo)題A Unified Management
編輯Jesse Anderson
視頻videohttp://file.papertrans.cn/264/263173/263173.mp4
概述Helps you debug why your team is failing or underperforming due to management issues.Covers how to skill and resource data science, data engineering, and operations teams.Teaches you how to assign the
圖書封面Titlebook: Data Teams; A Unified Management Jesse Anderson Book 2020 Jesse Anderson 2020 data.Big Data.Data Science.Data Scientist.Data Engineering.Da
描述.Learn how to run successful big data projects, how to resource your teams, and how the teams should work with each other to be cost effective. This book introduces the three teams necessary for successful projects, and what each team does...Most organizations fail with big data projects and the failure is almost always blamed on the technologies used. To be successful, organizations need to focus on both technology and management...Making use of data is a team sport. It takes different kinds of people with different skill sets all working together to get things done. In all but the smallest projects, people should be organized into multiple teams to reduce project failure and underperformance...This book focuses on management. A few years ago, there was little to nothing written or talked about on the management of big data projects or teams.?.Data Teams. shows why management failures are at the root of so many project failures and how to proactively prevent such failures with your project...What You Will Learn..Discover the three teams that you will need to be successful with big data.Understand what a data scientist is and what a data science team does.Understand what a data eng
出版日期Book 2020
關(guān)鍵詞data; Big Data; Data Science; Data Scientist; Data Engineering; Data Engineer; DataOps; DataOps Engineer
版次1
doihttps://doi.org/10.1007/978-1-4842-6228-3
isbn_softcover978-1-4842-6227-6
isbn_ebook978-1-4842-6228-3
copyrightJesse Anderson 2020
The information of publication is updating

書目名稱Data Teams影響因子(影響力)




書目名稱Data Teams影響因子(影響力)學(xué)科排名




書目名稱Data Teams網(wǎng)絡(luò)公開度




書目名稱Data Teams網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Teams被引頻次




書目名稱Data Teams被引頻次學(xué)科排名




書目名稱Data Teams年度引用




書目名稱Data Teams年度引用學(xué)科排名




書目名稱Data Teams讀者反饋




書目名稱Data Teams讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:11:10 | 只看該作者
Emrullah Gultekin,Mehmet S. AktasA data engineering team is responsible for creating data products and the architecture to build data products. These data products are really the lifeblood of the rest of the organization. The rest of the organization either consumes these data products—deriving insights that drive planning—or creates derivative data products for further use.
地板
發(fā)表于 2025-3-22 05:51:07 | 只看該作者
5#
發(fā)表于 2025-3-22 12:20:08 | 只看該作者
6#
發(fā)表于 2025-3-22 14:28:41 | 只看該作者
Lecture Notes in Computer ScienceIn earlier chapters, we’ve staffed your data teams and found support for them within the larger organization. This chapter covers a number of day-to-day and long-term issues that managers have to face as the teams progress:
7#
發(fā)表于 2025-3-22 18:46:15 | 只看該作者
8#
發(fā)表于 2025-3-23 00:10:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:40:15 | 只看該作者
10#
發(fā)表于 2025-3-23 08:16:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
弥勒县| 旬阳县| 乌海市| 高雄县| 喀什市| 民勤县| 建德市| 遵义县| 安康市| 康乐县| 平定县| 隆尧县| 会宁县| 绥棱县| 建瓯市| 桐乡市| 土默特左旗| 普洱| 陇西县| 天全县| 临泉县| 迭部县| 泰来县| 子长县| 沾化县| 汕尾市| 昔阳县| 广宁县| 新营市| 太仆寺旗| 镇巴县| 徐水县| 休宁县| 吴旗县| 旅游| 郎溪县| 南澳县| 老河口市| 库尔勒市| 威信县| 海丰县|