找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Stream Management; Lukasz Golab,M. Tamer ?zsu Book 2010 Springer Nature Switzerland AG 2010

[復(fù)制鏈接]
查看: 50020|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:42:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Data Stream Management
編輯Lukasz Golab,M. Tamer ?zsu
視頻videohttp://file.papertrans.cn/264/263156/263156.mp4
叢書(shū)名稱Synthesis Lectures on Data Management
圖書(shū)封面Titlebook: Data Stream Management;  Lukasz Golab,M. Tamer ?zsu Book 2010 Springer Nature Switzerland AG 2010
描述Many applications process high volumes of streaming data, among them Internet traffic analysis, financial tickers, and transaction log mining. In general, a data stream is an unbounded data set that is produced incrementally over time, rather than being available in full before its processing begins. In this lecture, we give an overview of recent research in stream processing, ranging from answering simple queries on high-speed streams to loading real-time data feeds into a streaming warehouse for off-line analysis. We will discuss two types of systems for end-to-end stream processing: Data Stream Management Systems (DSMSs) and Streaming Data Warehouses (SDWs). A traditional database management system typically processes a stream of ad-hoc queries over relatively static data. In contrast, a DSMS evaluates static (long-running) queries on streaming data, making a single pass over the data and using limited working memory. In the first part of this lecture, we will discuss research problems in DSMSs, such as continuous query languages, non-blocking query operators that continually react to new data, and continuous query optimization. The second part covers SDWs, which combine the rea
出版日期Book 2010
版次1
doihttps://doi.org/10.1007/978-3-031-01837-4
isbn_softcover978-3-031-00709-5
isbn_ebook978-3-031-01837-4Series ISSN 2153-5418 Series E-ISSN 2153-5426
issn_series 2153-5418
copyrightSpringer Nature Switzerland AG 2010
The information of publication is updating

書(shū)目名稱Data Stream Management影響因子(影響力)




書(shū)目名稱Data Stream Management影響因子(影響力)學(xué)科排名




書(shū)目名稱Data Stream Management網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Data Stream Management網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Data Stream Management被引頻次




書(shū)目名稱Data Stream Management被引頻次學(xué)科排名




書(shū)目名稱Data Stream Management年度引用




書(shū)目名稱Data Stream Management年度引用學(xué)科排名




書(shū)目名稱Data Stream Management讀者反饋




書(shū)目名稱Data Stream Management讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:50:53 | 只看該作者
Computing the Brain and the Computing BrainIn this chapter, we discuss DSMSs, including stream data models, query languages and semantics, and query processing and optimization.
板凳
發(fā)表于 2025-3-22 01:04:04 | 只看該作者
https://doi.org/10.1007/978-1-59259-275-3This chapter covers the design of Streaming Data Warehouses (SDWs). In some ways, an SDW faces the same challenges as standard data warehouses, among them the need to store massive amounts of data on disk for off-line analysis. However, SDWs must also deal with DSMS-like issues such as reacting to continuously arriving data.
地板
發(fā)表于 2025-3-22 06:24:50 | 只看該作者
Computing the Brain and the Computing BrainIn this lecture, we discussed end-to-end stream data management, including Data Stream Management Systems for on-line query processing and Streaming Data Warehouses for off-line analysis. We conclude with some directions for future work.
5#
發(fā)表于 2025-3-22 11:04:06 | 只看該作者
Data Stream Management Systems,In this chapter, we discuss DSMSs, including stream data models, query languages and semantics, and query processing and optimization.
6#
發(fā)表于 2025-3-22 16:51:16 | 只看該作者
7#
發(fā)表于 2025-3-22 17:30:58 | 只看該作者
8#
發(fā)表于 2025-3-22 23:28:17 | 只看該作者
9#
發(fā)表于 2025-3-23 02:24:37 | 只看該作者
10#
發(fā)表于 2025-3-23 09:30:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东平县| 广饶县| 曲阳县| 彭泽县| 鹤山市| 泸定县| 安多县| 平塘县| 隆昌县| 南漳县| 张家港市| 三台县| 民县| 南靖县| 花莲县| 广水市| 宁都县| 寻甸| 綦江县| 桦甸市| 玛曲县| 上思县| 景德镇市| 调兵山市| 商城县| 旅游| 铁力市| 都兰县| 南汇区| 北海市| 成都市| 宁南县| 兰坪| 皋兰县| 大兴区| 容城县| 布尔津县| 灯塔市| 德州市| 云梦县| 乌海市|