找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science in Engineering, Volume 9; Proceedings of the 4 Ramin Madarshahian,Francois Hemez Conference proceedings 2022 The Society for E

[復(fù)制鏈接]
查看: 21151|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:25:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Science in Engineering, Volume 9
副標題Proceedings of the 4
編輯Ramin Madarshahian,Francois Hemez
視頻videohttp://file.papertrans.cn/264/263128/263128.mp4
叢書名稱Conference Proceedings of the Society for Experimental Mechanics Series
圖書封面Titlebook: Data Science in Engineering, Volume 9; Proceedings of the 4 Ramin Madarshahian,Francois Hemez Conference proceedings 2022 The Society for E
描述.Data Science in Engineering, Volume 9:??Proceedings of the 40.th.?IMAC,.?.A Conference and Exposition on Structural Dynamics, 2022,?.the nineth volume of nine from the Conference brings together contributions to this important area of research and engineering.??The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:.Novel Data-driven Analysis Methods.Deep Learning Gaussian Process Analysis.Real-time Video-based Analysis.Applications to Nonlinear Dynamics and Damage Detection.High-rate Structural Monitoring and Prognostics.
出版日期Conference proceedings 2022
關(guān)鍵詞data science; Structural Dynamics; Dynamic Substructures; Structural Engineering; Conference Proceedings
版次1
doihttps://doi.org/10.1007/978-3-031-04122-8
isbn_softcover978-3-031-04124-2
isbn_ebook978-3-031-04122-8Series ISSN 2191-5644 Series E-ISSN 2191-5652
issn_series 2191-5644
copyrightThe Society for Experimental Mechanics, Inc. 2022
The information of publication is updating

書目名稱Data Science in Engineering, Volume 9影響因子(影響力)




書目名稱Data Science in Engineering, Volume 9影響因子(影響力)學科排名




書目名稱Data Science in Engineering, Volume 9網(wǎng)絡(luò)公開度




書目名稱Data Science in Engineering, Volume 9網(wǎng)絡(luò)公開度學科排名




書目名稱Data Science in Engineering, Volume 9被引頻次




書目名稱Data Science in Engineering, Volume 9被引頻次學科排名




書目名稱Data Science in Engineering, Volume 9年度引用




書目名稱Data Science in Engineering, Volume 9年度引用學科排名




書目名稱Data Science in Engineering, Volume 9讀者反饋




書目名稱Data Science in Engineering, Volume 9讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:59:09 | 只看該作者
Estimation of Structural Vibration Modal Properties Using a Spike-Based Computing Paradigm, combine spike-based computing and machine-learning-based neural networks that emulate the operation of the human brain. Spiking neural networks have the ability to be easily integrated into neuromorphic hardware, such as Intel’s . chip. The advantages of neuromorphic hardware are its high-speed com
地板
發(fā)表于 2025-3-22 06:40:26 | 只看該作者
5#
發(fā)表于 2025-3-22 08:44:21 | 只看該作者
Transmittance Anomalies for Model-Based Damage Detection with Finite Element-Generated Data and Deee on damage detection and identification tasks. The main advantage of finite element (FE)-generated data is the substitution of costly and sometimes impossible experiments to acquire data for different healthy and damaged states. On the other hand, numerically generated data is strongly limited on t
6#
發(fā)表于 2025-3-22 14:48:46 | 只看該作者
Machine Learning-Based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faata is used to train a convolutional neural network (CNN) which performs damage identification on two experimental damaged states. The multibody dynamics (MBD) model of a two-stage helical gear transmission is first developed and used to model the healthy and the damaged state of the problem. Data i
7#
發(fā)表于 2025-3-22 20:42:30 | 只看該作者
Structural Damage Detection Framework Using Metaheuristic Algorithms and Optimal Finite Element Moda structure. The recent trends show that there is an increasing interest in the use of machine learning (ML) for SHM systems that rely on the experimentally measured data or artificially collected data to properly train the ML model for classification. The proposed method however is taking another a
8#
發(fā)表于 2025-3-22 23:53:50 | 只看該作者
9#
發(fā)表于 2025-3-23 04:25:38 | 只看該作者
10#
發(fā)表于 2025-3-23 08:32:39 | 只看該作者
Data-Driven Structural Identification for Turbomachinery Blisks,ece of material with uniform sector-to-sector material properties and geometry. However, due to manufacturing tolerances, blisks contain sector-to-sector perturbations in material properties and geometry known as mistuning, which can result in increased response amplitudes due to energy localization
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃源县| 西吉县| 正宁县| 屏边| 阿合奇县| 镇原县| 瑞安市| 托克逊县| 逊克县| 湛江市| 瓮安县| 宁海县| 肇州县| 芜湖市| 会泽县| 东乡县| 青神县| 黔江区| 织金县| 浪卡子县| 西和县| 忻城县| 泉州市| 勃利县| 那曲县| 安宁市| 峡江县| 杭锦旗| 城步| 阳春市| 双辽市| 宾川县| 海丰县| 花莲市| 湖州市| 凯里市| 苗栗市| 江华| 五原县| 逊克县| 晋江市|