找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science in Agriculture and Natural Resource Management; G. P. Obi Reddy,Mehul S. Raval,Sanjay Chaudhary Book 2022 The Editor(s) (if a

[復制鏈接]
查看: 13979|回復: 54
樓主
發(fā)表于 2025-3-21 19:50:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Science in Agriculture and Natural Resource Management
編輯G. P. Obi Reddy,Mehul S. Raval,Sanjay Chaudhary
視頻videohttp://file.papertrans.cn/264/263124/263124.mp4
概述Binds the state-of-the-art use of data science concepts and applications.Provides detailed insight for the scientists and practitioners to undertake large-scale projects.Brings together a group of top
叢書名稱Studies in Big Data
圖書封面Titlebook: Data Science in Agriculture and Natural Resource Management;  G. P. Obi Reddy,Mehul S. Raval,Sanjay Chaudhary Book 2022 The Editor(s) (if a
描述This book aims to address emerging challenges in the field of agriculture and natural resource management using the principles and applications of data science (DS). The book is organized in three sections, and it has fourteen chapters dealing with specialized areas.? The chapters are written by experts sharing their experiences very lucidly through case studies, suitable illustrations and tables. The contents have been designed to fulfil the needs of geospatial, data science, agricultural, natural resources and environmental sciences of traditional universities, agricultural universities, technological universities, research institutes and academic colleges worldwide. It will help the planners, policymakers and extension scientists in planning and sustainable management of agriculture and natural resources. The authors believe that with its uniqueness the book is one of the important efforts in the contemporary cyber-physical systems..
出版日期Book 2022
關(guān)鍵詞Precision Farming; Cloud Computing; Computer Vision; Deep Learning; Disruptive Innovations; Big Data Anal
版次1
doihttps://doi.org/10.1007/978-981-16-5847-1
isbn_softcover978-981-16-5849-5
isbn_ebook978-981-16-5847-1Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Data Science in Agriculture and Natural Resource Management影響因子(影響力)




書目名稱Data Science in Agriculture and Natural Resource Management影響因子(影響力)學科排名




書目名稱Data Science in Agriculture and Natural Resource Management網(wǎng)絡公開度




書目名稱Data Science in Agriculture and Natural Resource Management網(wǎng)絡公開度學科排名




書目名稱Data Science in Agriculture and Natural Resource Management被引頻次




書目名稱Data Science in Agriculture and Natural Resource Management被引頻次學科排名




書目名稱Data Science in Agriculture and Natural Resource Management年度引用




書目名稱Data Science in Agriculture and Natural Resource Management年度引用學科排名




書目名稱Data Science in Agriculture and Natural Resource Management讀者反饋




書目名稱Data Science in Agriculture and Natural Resource Management讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:22:09 | 只看該作者
Gerhard X. Ritter,Gonzalo Urcidus spatial data, and integration of these datasets with ground-based observational data significantly enhanced the capabilities in mapping, monitoring, and forecasting various earth system processes. ML algorithms have vast potential in monitoring earth resources to provide timely information for si
板凳
發(fā)表于 2025-3-22 02:59:40 | 只看該作者
Vassilis G. Kaburlasos,Gerhard X. Ritteright amount of pesticide, irrigation water, and nutrients. The typical components of Precision Farming include background data, record-keeping systems, data analysis, and decision-making process, specialized implementation equipment, and evaluation and revision. Significant benefits of precision agr
地板
發(fā)表于 2025-3-22 08:01:36 | 只看該作者
Angelos Barmpoutis,Gerhard X. Ritter by highlighting their computational efficiency and higher model interpretability in comparison with other earlier mentioned statistical learning techniques. This is followed by the introduction of basic terms and concepts necessary for understanding DT models and their associated statistical learni
5#
發(fā)表于 2025-3-22 11:14:23 | 只看該作者
6#
發(fā)表于 2025-3-22 14:40:09 | 只看該作者
José Luis Verdegay,Julio Brito,Carlos Cruztes which are required by the specific consumer. The recommendations can be generated by using the endogenous and exogenous data captured through IoT sensors and AI modeling. The architecture is generic and solutions can be designed to work for a range of foods/crops. The architecture is designed to
7#
發(fā)表于 2025-3-22 18:46:01 | 只看該作者
8#
發(fā)表于 2025-3-23 00:47:36 | 只看該作者
9#
發(fā)表于 2025-3-23 04:34:41 | 只看該作者
Simultaneous Phasing of Multiple Polyploidsusefulness of the current data sources and methods, this chapter presents a methodology that combines seasonal weather forecasts, geo-spatial information derived from remote-sensing, risks posed by extreme events and crop growth models to estimate production risk at a regional scale. The method was
10#
發(fā)表于 2025-3-23 09:25:09 | 只看該作者
https://doi.org/10.1007/978-3-319-24462-4asses, the clustering algorithms to group the objects into classes based on a given set of input variables, the regression algorithms to forecast a response variable from a given a set of covariates, and the dimensionality reduction algorithms to build a small set of new variables that includes most
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
军事| 镇坪县| 册亨县| 新宁县| 南澳县| 克东县| 洪泽县| 孟津县| 林州市| 榆树市| 墨玉县| 上饶县| 永新县| 卢龙县| 剑河县| 佛山市| 民乐县| 十堰市| 芮城县| 池州市| 富宁县| 宜兰市| 新绛县| 新建县| 靖安县| 邳州市| 怀宁县| 广饶县| 钟祥市| 长岭县| 芜湖县| 宿州市| 股票| 富民县| 定日县| 神木县| 永善县| 那曲县| 逊克县| 高阳县| 黄陵县|