找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science for Fake News; Surveys and Perspect Deepak P,Tanmoy Chakraborty,Santhosh Kumar G Book 2021 Springer Nature Switzerland AG 2021

[復(fù)制鏈接]
樓主: 生長變吼叫
41#
發(fā)表于 2025-3-28 17:18:04 | 只看該作者
Dynamics of Fake News Diffusionffusion and addressing the challenges involved. We then model information cascade in various ways such as a diffusion tree. We then present a series of traditional and recent approaches which attempt to model the spread of fake news on social media.
42#
發(fā)表于 2025-3-28 20:16:06 | 只看該作者
43#
發(fā)表于 2025-3-29 02:11:16 | 只看該作者
44#
發(fā)表于 2025-3-29 06:07:33 | 只看該作者
45#
發(fā)表于 2025-3-29 08:58:14 | 只看該作者
46#
發(fā)表于 2025-3-29 14:17:12 | 只看該作者
47#
發(fā)表于 2025-3-29 15:34:38 | 只看該作者
Multi-modal Fake News Detectionuman cognition tends to consume news more when it is visually depicted through multimedia content than just plain text. Fake news spreaders leverage this cognitive state to prepare false information in such a way that it looks attractive in the first place. Therefore, multi-modal representation of f
48#
發(fā)表于 2025-3-29 21:18:06 | 只看該作者
Deep Learning for Fake News Detectionitigate its use are essential because of their potential to influence the information ecosystem. A vast amount of work using deep learning techniques paved a way to understand the anatomy of fake news and its spread through social media. This chapter attempts to take stock of such efforts and look b
49#
發(fā)表于 2025-3-30 02:07:48 | 只看該作者
Dynamics of Fake News Diffusionall spread of news contents through network links such as followers, friends, etc. Those fake stories which gain quick visibility are deployed on social media in a strategic way in order to create maximum impact. In this context, the selection of initiators, the time of deployment, the estimation of
50#
發(fā)表于 2025-3-30 06:39:12 | 只看該作者
Neural Language Models for (Fake?) News Generation generation and many downstream applications of NLP. Deep learning models with multitudes of parameters have achieved remarkable progress in machine-generated news items indistinguishable from human experts’ articles. Though the developed techniques are for authentic text generation and entertainmen
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠安县| 革吉县| 高州市| 大洼县| 桓台县| 宁都县| 连山| 丹棱县| 阳原县| 宜良县| 兴化市| 桃园县| 石棉县| 读书| 寿宁县| 峨山| 榆树市| 海丰县| 平山县| 民权县| 武定县| 新竹县| 农安县| 桐庐县| 万盛区| 石屏县| 龙陵县| 凤翔县| 贡嘎县| 措美县| 洱源县| 广东省| 阳江市| 梧州市| 奉节县| 商水县| 鹤峰县| 黄山市| 仙游县| 林周县| 镇江市|