找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Security; Proceedings of IDSCS Samiksha Shukla,Hiroki Sayama,Durgesh Kumar Mishra Conference proceedings 2024 The Editor(s

[復(fù)制鏈接]
樓主: 法庭
41#
發(fā)表于 2025-3-28 17:31:21 | 只看該作者
Ontology Integration for Cultural Landscape Management Using ML and Assistive Artificial Intelligen with differential thresholds, enhancing reasoning infrastructure. The model achieves a high precision of 95.06%, a low False Discovery Rate of 0.05, and an impressive F-measure of 96.06%. This research makes a significant contribution to automatic ontology conception, particularly in rare domains like cultural landscape management.
42#
發(fā)表于 2025-3-28 20:25:29 | 只看該作者
43#
發(fā)表于 2025-3-29 01:53:37 | 只看該作者
Conference proceedings 2024y the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, from 02–04 November, 2023. The proceeding targets the current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorit
44#
發(fā)表于 2025-3-29 05:07:54 | 只看該作者
45#
發(fā)表于 2025-3-29 10:27:30 | 只看該作者
OGIA: Ontology Integration and Generation Using Archaeology as a Domain,, and evolutionary algorithm help in optimizing initial solution sets to a much more optimal solution set for generating ontologies. Overall, a highest average precision percentage of 94.09%, highest average accuracy percentage of 95.09%, highest average recall percentage of 96.09%, and highest aver
46#
發(fā)表于 2025-3-29 11:38:56 | 只看該作者
47#
發(fā)表于 2025-3-29 16:16:39 | 只看該作者
,Extracting Network Structures from?Corporate Organization Charts Using Heuristic Image Processing,Diagram Handbook” published by Diamond, Inc., from 2008 to 2011. Out of the 10,008 organization chart PDF files, our method was able to reconstruct 4,606 organization networks (data acquisition success rate: 46%). For each reconstructed organization network, we measured several network diagnostics,
48#
發(fā)表于 2025-3-29 23:39:25 | 只看該作者
Generating Equations for Mathematical Word Problems Using Multi-head Attention Transformer,cal equations for word problems, outperforming other models that use traditional sequence-to-sequence approaches. The analysis of the attention mechanism of our model is also mentioned, which sheds light on how it learns to attend to relevant parts of the input sequence to generate the correct mathe
49#
發(fā)表于 2025-3-30 03:02:30 | 只看該作者
Early Phase Detection of Bacterial Blight in Pomegranate Using GAN Versus Ensemble Learning, traditional methods. Without the use of paired training data, the suggested method of Cycle-GAN is a sort of Generative Adversarial Network (GAN) that can learn to translate images from one domain to another. Cycle-GAN has demonstrated its efficacy in various image-to-image translation problems by
50#
發(fā)表于 2025-3-30 07:16:20 | 只看該作者
Pioneering Image Analysis with Hybrid Convolutional Neural Networks and Generative Adversarial Netw of the standout features of the hybrid G-CNN model is its exceptional loss metrics. It achieves the lowest loss at an astonishingly low value of 0.030, and concurrently, it records the lowest validation loss at 0.031. These results clearly establish the superiority of the hybrid G-CNN model in comp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 06:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠安县| 东兰县| 夏邑县| 高碑店市| 汝城县| 玛纳斯县| 高阳县| 宣武区| 丰城市| 许昌市| 汉沽区| 绥棱县| 清流县| 禄丰县| 桃江县| 英山县| 阳高县| 绍兴市| 苏尼特右旗| 册亨县| 常熟市| 咸宁市| 凤翔县| 景德镇市| 双柏县| 白河县| 蒙山县| 班玛县| 霍林郭勒市| 习水县| 永和县| 淮北市| 台州市| 定远县| 景谷| 霍州市| 营口市| 峨边| 河北区| 宝坻区| 噶尔县|