找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Productivity Analytics; Vincent Charles,Juan Aparicio,Joe Zhu Book 2020 Springer Nature Switzerland AG 2020 Productivity

[復制鏈接]
查看: 30959|回復: 54
樓主
發(fā)表于 2025-3-21 17:26:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Science and Productivity Analytics
編輯Vincent Charles,Juan Aparicio,Joe Zhu
視頻videohttp://file.papertrans.cn/264/263105/263105.mp4
概述First book to combine DEA and Data Science.Editors and Contributors at the forefront of field worldwide.Illustrates how Data Science techniques can unleash value and drive productivity
叢書名稱International Series in Operations Research & Management Science
圖書封面Titlebook: Data Science and Productivity Analytics;  Vincent Charles,Juan Aparicio,Joe Zhu Book 2020 Springer Nature Switzerland AG 2020 Productivity
描述.This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of ‘productivity analysis/data envelopment analysis’ and ‘data science/big data’. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others...Examples of data science techniques include linear and logistic regressions, decision trees, Na?ve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubtthat nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to
出版日期Book 2020
關(guān)鍵詞Productivity Analysis; Data Science; Data Envelopment Analysis (DEA); Big Data; Efficiency; Parametric An
版次1
doihttps://doi.org/10.1007/978-3-030-43384-0
isbn_softcover978-3-030-43386-4
isbn_ebook978-3-030-43384-0Series ISSN 0884-8289 Series E-ISSN 2214-7934
issn_series 0884-8289
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Data Science and Productivity Analytics影響因子(影響力)




書目名稱Data Science and Productivity Analytics影響因子(影響力)學科排名




書目名稱Data Science and Productivity Analytics網(wǎng)絡公開度




書目名稱Data Science and Productivity Analytics網(wǎng)絡公開度學科排名




書目名稱Data Science and Productivity Analytics被引頻次




書目名稱Data Science and Productivity Analytics被引頻次學科排名




書目名稱Data Science and Productivity Analytics年度引用




書目名稱Data Science and Productivity Analytics年度引用學科排名




書目名稱Data Science and Productivity Analytics讀者反饋




書目名稱Data Science and Productivity Analytics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:00 | 只看該作者
International Series in Operations Research & Management Sciencehttp://image.papertrans.cn/d/image/263105.jpg
板凳
發(fā)表于 2025-3-22 04:03:08 | 只看該作者
Playing with Text and Data Filesork provides the fastest available technique in the DEA literature to deal with big data. It is well known that as the number of decision-making units (DMUs) or the number of inputs–outputs increases, the size of DEA linear programming problems increases; and thus, the elapsed time to evaluate the p
地板
發(fā)表于 2025-3-22 07:41:59 | 只看該作者
Playing with Text and Data Fileshave a broad impact within and beyond the field. Algorithmic, computational, and geometric results in DEA allow us to solve larger problems faster; they also contribute to various other fields including computational geometry, statistics, and machine learning. This chapter reviews these topics from
5#
發(fā)表于 2025-3-22 12:37:04 | 只看該作者
6#
發(fā)表于 2025-3-22 13:18:59 | 只看該作者
7#
發(fā)表于 2025-3-22 20:19:38 | 只看該作者
Computational Biology of Non-Coding RNAon the non-parametric derivation of the Production Possibility Set (PPS), on the multiplicity of DEA models and on how to handle different types of situations, namely, undesirable outputs, ratio variables, multi-period data, negative data non-discretionary variables, and integer variables.
8#
發(fā)表于 2025-3-22 23:13:41 | 只看該作者
Rosario Michael Piro,Annalisa Marsicons that are available using the Stochastic Frontier Analysis (SFA), the most popular parametric frontier technique. We start this chapter summarizing the main results of production theory using the concept of distance function. Next, we outline the most popular estimation methods: maximum likelihood
9#
發(fā)表于 2025-3-23 02:31:46 | 只看該作者
Xin Lai,Shailendra K. Gupta,Julio Verafor the second stage is critical, in order to ensure that the two stages have incentives to collaborate with each other to achieve the best performance of the whole system. Data envelopment analysis (DEA) as a non-parametric approach for efficiency evaluation of multi-input, multi-output systems has
10#
發(fā)表于 2025-3-23 09:19:47 | 只看該作者
Rosario Michael Piro,Annalisa Marsicollocate fixed cost and resource primary based on the efficiency maximization principle. However, due to the existing of technology heterogeneity among DMUs, it is impractical for all the DMUs to achieve a common technology level, especially when some DMUs are far from the efficient frontier. In this
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
五家渠市| 保定市| 元阳县| 万盛区| 泽州县| 吉木乃县| 五莲县| 商洛市| 开鲁县| 溧水县| 永春县| 漳平市| 海阳市| 阳谷县| 温州市| 安徽省| 南陵县| 武山县| 临城县| 吴川市| 赣榆县| 宁河县| 确山县| 定兴县| 宣城市| 密云县| 马龙县| 仙居县| 沂水县| 洞口县| 时尚| 托克托县| 泸水县| 乐东| 玉田县| 德惠市| 东港市| 苏尼特左旗| 年辖:市辖区| 韶山市| 万盛区|