找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Big Data: An Environment of Computational Intelligence; Witold Pedrycz,Shyi-Ming Chen Book 2017 Springer International Pu

[復(fù)制鏈接]
查看: 44594|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:02:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Science and Big Data: An Environment of Computational Intelligence
編輯Witold Pedrycz,Shyi-Ming Chen
視頻videohttp://file.papertrans.cn/264/263087/263087.mp4
概述Discusses implementations and case studies.Identifies the best design practices.Assesses data analytics business models and practices in industry, health care, administration and business.Includes sup
叢書名稱Studies in Big Data
圖書封面Titlebook: Data Science and Big Data: An Environment of Computational Intelligence;  Witold Pedrycz,Shyi-Ming Chen Book 2017 Springer International Pu
描述This book presents a comprehensive and up-to-date treatise of a range of methodological and algorithmic issues. It also discusses implementations and case studies, identifies the best design practices, and assesses data analytics business models and practices in industry, health care, administration and business..Data science and big data go hand in hand and constitute a rapidly growing area of research and have attracted the attention of industry and business alike. The area itself has opened up promising new directions of fundamental and applied research and has led to interesting applications, especially those addressing the immediate need to deal with large repositories of data and building tangible, user-centric models of relationships in data. Data is the lifeblood of today’s knowledge-driven economy..Numerous data science models are oriented towards end users and along with the regular requirements for accuracy (which are present in any modeling), come the requirements for ability to process huge and varying data sets as well as robustness, interpretability, and simplicity (transparency). Computational intelligence with its underlying methodologies and tools helps address da
出版日期Book 2017
關(guān)鍵詞Big Data; Data Science; Computational Intelligence; Data Analytics; Internet of Things
版次1
doihttps://doi.org/10.1007/978-3-319-53474-9
isbn_softcover978-3-319-85162-4
isbn_ebook978-3-319-53474-9Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Data Science and Big Data: An Environment of Computational Intelligence影響因子(影響力)




書目名稱Data Science and Big Data: An Environment of Computational Intelligence影響因子(影響力)學(xué)科排名




書目名稱Data Science and Big Data: An Environment of Computational Intelligence網(wǎng)絡(luò)公開度




書目名稱Data Science and Big Data: An Environment of Computational Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science and Big Data: An Environment of Computational Intelligence被引頻次




書目名稱Data Science and Big Data: An Environment of Computational Intelligence被引頻次學(xué)科排名




書目名稱Data Science and Big Data: An Environment of Computational Intelligence年度引用




書目名稱Data Science and Big Data: An Environment of Computational Intelligence年度引用學(xué)科排名




書目名稱Data Science and Big Data: An Environment of Computational Intelligence讀者反饋




書目名稱Data Science and Big Data: An Environment of Computational Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:10:59 | 只看該作者
地板
發(fā)表于 2025-3-22 07:25:49 | 只看該作者
5#
發(fā)表于 2025-3-22 11:13:00 | 只看該作者
Developing Modified Classifier for Big Data Paradigm: An Approach Through Bio-Inspired Soft Computind on supervised features following conventional data mining principle. However, the classification of majority or positive class is over-sampled by taking each minority class sample. Definitely, significant computationally intelligent methodologies have been introduced. Following the philosophy of d
6#
發(fā)表于 2025-3-22 13:36:18 | 只看該作者
Unified Framework for Control of Machine Learning Tasks Towards Effective and Efficient Processing oachieve effective selection of data pre-processing techniques towards effective selection of relevant attributes, sampling of representative training and test data, and appropriate dealing with missing values and noise. More importantly, this framework allows the employment of suitable machine learn
7#
發(fā)表于 2025-3-22 20:59:19 | 只看該作者
8#
發(fā)表于 2025-3-23 00:43:20 | 只看該作者
Event Detection in Location-Based Social Networksause of this, we propose a probabilistic machine learning approach to event detection which explicitly models the data generation process and enables reasoning about the discovered events. With the aim to set forth the differences between both approaches, we present two techniques for the problem of
9#
發(fā)表于 2025-3-23 05:27:35 | 只看該作者
10#
發(fā)表于 2025-3-23 06:30:26 | 只看該作者
Big Data for Effective Management of Smart Gridsata, and user interaction data are collected. Then, as described in several scientific papers, many data analysis techniques, including optimization, forecasting, classification and other, can be applied on the large amounts of smart grid big data. There are several techniques, based on Big Data ana
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孝昌县| 东阳市| 波密县| 安宁市| 逊克县| 环江| 西丰县| 丰镇市| 龙泉市| 旬阳县| 永德县| 崇左市| 海门市| 成安县| 丰顺县| 乌鲁木齐县| 宾川县| 定日县| 武宣县| 乌恰县| 安达市| 三江| 平舆县| 昌图县| 平潭县| 宝兴县| 沛县| 德格县| 辉县市| 乐亭县| 桃源县| 赤峰市| 苍南县| 闽侯县| 临朐县| 恩施市| 灵山县| 宁陵县| 蚌埠市| 红安县| 南靖县|