找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Big Data Computing; Frameworks and Metho Zaigham Mahmood Book 2016 Springer International Publishing Switzerland 2016 Big

[復(fù)制鏈接]
樓主: HEMI
31#
發(fā)表于 2025-3-27 00:00:48 | 只看該作者
ribes the frameworks relevant to data science, and their appThis illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, dis
32#
發(fā)表于 2025-3-27 01:56:45 | 只看該作者
Compounds of Arsenic, Antimony, and Bismuthfuzzy set. This approximation allows to divide the whole graph into multiple subgraphs that can be processed independently. Then, for each subgraph, a MapReduce-based greedy algorithm can be designed to identify the minimum-sized influential vertices for the whole graph.
33#
發(fā)表于 2025-3-27 08:03:48 | 只看該作者
https://doi.org/10.1007/978-3-642-50290-3ility. This chapter provides the introductory material about the various Hadoop ecosystem tools and describes their usage with data analytics. Each tool has its own significance in its functions in data analytics environment.
34#
發(fā)表于 2025-3-27 09:40:09 | 只看該作者
35#
發(fā)表于 2025-3-27 17:02:03 | 只看該作者
Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted Graphs: A Big Data Perspectivfuzzy set. This approximation allows to divide the whole graph into multiple subgraphs that can be processed independently. Then, for each subgraph, a MapReduce-based greedy algorithm can be designed to identify the minimum-sized influential vertices for the whole graph.
36#
發(fā)表于 2025-3-27 21:33:10 | 只看該作者
37#
發(fā)表于 2025-3-27 22:06:08 | 只看該作者
A Framework for Data Mining and Knowledge Discovery in Cloud Computingnd advantages of the proposed DMCC framework. This study also compares the running times when data mining algorithms are executed in serial and parallel in a cloud environment through DMCC framework. Experimental results show that DMCC greatly decreases the execution times of data mining algorithms.
38#
發(fā)表于 2025-3-28 04:45:12 | 只看該作者
39#
發(fā)表于 2025-3-28 07:06:54 | 只看該作者
Book 2016resents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.
40#
發(fā)表于 2025-3-28 14:23:59 | 只看該作者
David Brown,Mike Herman,Gustavo Nobreis suitable for both complex (Web-level) and simple (device-level) applications. On the variety dimension, the goal is to reduce design-time requirements for interoperability by using structural data matching instead of sharing schemas or media types. In this approach, independently developed applic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆阳市| 获嘉县| 凤阳县| 丽江市| 遵化市| 武夷山市| 汉中市| 忻城县| 汕头市| 安顺市| 许昌市| 阿拉尔市| 福泉市| 文水县| 沈丘县| 洛隆县| 博兴县| 彰化市| 芦溪县| 汕头市| 武功县| 虹口区| 罗平县| 保德县| 大悟县| 江北区| 旺苍县| 和田县| 淳化县| 浏阳市| 高阳县| 京山县| 留坝县| 新平| 新晃| 翁牛特旗| 南阳市| 随州市| 老河口市| 宜君县| 定襄县|