找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Artificial Intelligence; First International Chutiporn Anutariya,Marcello M. Bonsangue Conference proceedings 2023 The Ed

[復(fù)制鏈接]
樓主: Opulent
51#
發(fā)表于 2025-3-30 11:09:21 | 只看該作者
1865-0929 23..The 22 full papers and the 4 short papers included in this volume were carefully reviewed and selected from 70 submissions.?This volume focuses on ideas, methodologies, and cutting-edge research that can drive progress and foster interdisciplinary collaboration in the fields of data science and
52#
發(fā)表于 2025-3-30 15:46:03 | 只看該作者
53#
發(fā)表于 2025-3-30 18:23:06 | 只看該作者
Hybridization of Modified Grey Wolf Optimizer and Dragonfly for Feature Selectionrtinent features. Our experimental results showcase robust model performance, achieving an F1-score of 90% on our experimental dataset, surpassing other approaches. Further results and discussions are provided in this paper, .
54#
發(fā)表于 2025-3-30 23:21:08 | 只看該作者
Deep-Learning-Based LSTM Model for Predicting a Tidal River’s Water Levels: A Case Study of the Kapusize, the LSTM model consistently outperforms GRU and RNN models in comparative assessments. These findings offer not only valuable insights into water level prediction in the study area but also the potential of deep learning to enhance flood and disaster management in similar river systems globally.
55#
發(fā)表于 2025-3-31 02:44:39 | 只看該作者
SecureQNN: Introducing a?Privacy-Preserving Framework for?QNNs at?the?Deep Edgehe number of epochs an attacker requires to build a model with the same accuracy as the target with the information disclosed. The set of layers whose information makes the attacker spend less training effort than the owner training from scratch is protected in an isolated environment, i.e., the sec
56#
發(fā)表于 2025-3-31 05:56:29 | 只看該作者
Chaotic Mountain Gazelle Optimizer (CMGO): A Robust Optimization Algorithm for K-Means Clustering of outperforms the original MGO and other tested algorithms in clustering pure numeric and categorical data, securing first place, and third for mixed data. Thus, CMGO emerges as a robust, efficient K-means optimizing method for complex, diverse datasets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通许县| 马公市| 尼木县| 长葛市| SHOW| 武川县| 积石山| 焦作市| 绥芬河市| 宁南县| 博兴县| 麦盖提县| 招远市| 镇巴县| 松溪县| 宁远县| 宣恩县| 龙南县| 神池县| 密云县| 乌拉特前旗| 二连浩特市| 布尔津县| 兴义市| 乌拉特前旗| 栾川县| 班玛县| 仁化县| 齐齐哈尔市| 永善县| 应城市| 淄博市| 奉化市| 镇江市| 裕民县| 正阳县| 盱眙县| 博罗县| 巴彦淖尔市| 顺昌县| 沙河市|