找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Artificial Intelligence; First International Chutiporn Anutariya,Marcello M. Bonsangue Conference proceedings 2023 The Ed

[復(fù)制鏈接]
查看: 45809|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:14:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Science and Artificial Intelligence
副標(biāo)題First International
編輯Chutiporn Anutariya,Marcello M. Bonsangue
視頻videohttp://file.papertrans.cn/264/263083/263083.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Data Science and Artificial Intelligence; First International  Chutiporn Anutariya,Marcello M. Bonsangue Conference proceedings 2023 The Ed
描述This book constitutes the proceedings of the First International Conference, DSAI 2023, held in Bangkok, Thailand, during November 27–30, 2023..The 22 full papers and the 4 short papers included in this volume were carefully reviewed and selected from 70 submissions.?This volume focuses on ideas, methodologies, and cutting-edge research that can drive progress and foster interdisciplinary collaboration in the fields of data science and artificial intelligence.
出版日期Conference proceedings 2023
關(guān)鍵詞foundations of data science and artificial intelligence; data security; machine learning; deep learning
版次1
doihttps://doi.org/10.1007/978-981-99-7969-1
isbn_softcover978-981-99-7968-4
isbn_ebook978-981-99-7969-1Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Data Science and Artificial Intelligence影響因子(影響力)




書目名稱Data Science and Artificial Intelligence影響因子(影響力)學(xué)科排名




書目名稱Data Science and Artificial Intelligence網(wǎng)絡(luò)公開度




書目名稱Data Science and Artificial Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science and Artificial Intelligence被引頻次




書目名稱Data Science and Artificial Intelligence被引頻次學(xué)科排名




書目名稱Data Science and Artificial Intelligence年度引用




書目名稱Data Science and Artificial Intelligence年度引用學(xué)科排名




書目名稱Data Science and Artificial Intelligence讀者反饋




書目名稱Data Science and Artificial Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:54 | 只看該作者
地板
發(fā)表于 2025-3-22 05:27:19 | 只看該作者
A Modified Hybrid RBF-BP Network Classifier for?Nonlinear Estimation/Classification and?Its Applicat[., .] is proposed. The modified hybrid RBF-BP network is formulated as an adaptive incremental learning algorithm for a single-layer RBF hidden neuron layer. The algorithm uses a density clustering approach to determine the number of RBF hidden neurons and it maintains the self-learning process of
5#
發(fā)表于 2025-3-22 12:03:49 | 只看該作者
6#
發(fā)表于 2025-3-22 16:09:03 | 只看該作者
Exploration of?the?Feasibility and?Applicability of?Domain Adaptation in?Machine Learning-Based Codee to limited choices of the publicly available datasets, most of the machine learning-based classifiers were trained by the earlier versions of open-source projects that no longer represent the characteristics and properties of modern programming languages. Our experiments exhibit the feasibility an
7#
發(fā)表于 2025-3-22 17:05:48 | 只看該作者
Web Usage Mining for?Determining a?Website’s Usage Pattern: A Case Study of?Government Websiteyze a website’s usage. This study examined web usage mining to discover online users’ usage patterns and used the results to redesign and improve the government website. This study aims to help online customers obtain a better experience. A dataset was collected from the Metropolitan Electricity Aut
8#
發(fā)表于 2025-3-23 00:12:15 | 只看該作者
Deep-Learning-Based LSTM Model for Predicting a Tidal River’s Water Levels: A Case Study of the Kapuing method to forecast the water level dynamics of the Kapuas Kecil River and determine the optimal window size for precise predictions. Our results reveal an optimal window size of 336 h (equivalent to 14?days) for water level prediction using LSTM in this coastal region. Using this optimal window
9#
發(fā)表于 2025-3-23 01:22:26 | 只看該作者
Data Augmentation for?EEG Motor Imagery Classification Using Diffusion Model brain-computer interfaces (BCIs). However, due to the limited amount of available data, overfitting is a common problem, especially when using a deep-learning classifier. One way to address this is by performing data augmentation. In this paper, we investigate the efficacy of the diffusion model as
10#
發(fā)表于 2025-3-23 06:12:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新绛县| 赣榆县| 临清市| 赣州市| 察隅县| 安宁市| 特克斯县| 卢氏县| 湘阴县| 江永县| 张家界市| 西吉县| 封开县| 凤山市| 驻马店市| 神农架林区| 平湖市| 耒阳市| 曲麻莱县| 德兴市| 天津市| 阿拉善左旗| 东城区| 博白县| 宜宾县| 兰西县| 汶川县| 花莲市| 图木舒克市| 荣成市| 巴彦淖尔市| 江达县| 三都| 东丽区| 达尔| 天水市| 鸡泽县| 郎溪县| 南康市| 衡水市| 吴忠市|