找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Applications for Modern Power Systems; Le Xie,Yang Weng,Ram Rajagopal Book 2023 Springer Nature Switzerland AG 2023 Utili

[復(fù)制鏈接]
查看: 36358|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:50:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Data Science and Applications for Modern Power Systems
編輯Le Xie,Yang Weng,Ram Rajagopal
視頻videohttp://file.papertrans.cn/264/263082/263082.mp4
概述Presents a comprehensive review of data sciences for the power industry.Contains state-of-the-art research articles.Provides practical algorithms and case studies
叢書(shū)名稱Power Electronics and Power Systems
圖書(shū)封面Titlebook: Data Science and Applications for Modern Power Systems;  Le Xie,Yang Weng,Ram Rajagopal Book 2023 Springer Nature Switzerland AG 2023 Utili
描述.This book offers a comprehensive collection of research articles that utilize data—in particular large data sets—in modern power systems operation and planning. As the power industry moves towards actively utilizing distributed resources with advanced technologies and incentives, it is becoming increasingly important to benefit from the available heterogeneous data sets for improved decision-making. The authors present a first-of-its-kind comprehensive review of big data opportunities and challenges in the smart grid industry. This book provides succinct and useful theory, practical algorithms, and case studies to improve power grid operations and planning utilizing big data, making it a useful graduate-level reference for students, faculty, and practitioners on the future grid..
出版日期Book 2023
關(guān)鍵詞Utility Data; Distribution System Data Operation; Smart Meter; Synchrophasor Data Analytics; Electric En
版次1
doihttps://doi.org/10.1007/978-3-031-29100-5
isbn_softcover978-3-031-29102-9
isbn_ebook978-3-031-29100-5Series ISSN 2196-3185 Series E-ISSN 2196-3193
issn_series 2196-3185
copyrightSpringer Nature Switzerland AG 2023
The information of publication is updating

書(shū)目名稱Data Science and Applications for Modern Power Systems影響因子(影響力)




書(shū)目名稱Data Science and Applications for Modern Power Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Data Science and Applications for Modern Power Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Data Science and Applications for Modern Power Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Data Science and Applications for Modern Power Systems被引頻次




書(shū)目名稱Data Science and Applications for Modern Power Systems被引頻次學(xué)科排名




書(shū)目名稱Data Science and Applications for Modern Power Systems年度引用




書(shū)目名稱Data Science and Applications for Modern Power Systems年度引用學(xué)科排名




書(shū)目名稱Data Science and Applications for Modern Power Systems讀者反饋




書(shū)目名稱Data Science and Applications for Modern Power Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:47:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:55:21 | 只看該作者
Complications of Peritoneal Shuntsnd the linear dynamical system theory for performance guarantees. Since the PMU data are quite dense due to the extremely high data resolution, we introduce principal component analysis (PCA) and its variational form, e.g., robust PCA (RPCA). They show how to conduct fast data analytics within a short period of time.
地板
發(fā)表于 2025-3-22 07:38:40 | 只看該作者
Design New Markets,ng their appliances, as discussed in Chap. .. We will provide a data-driven market design by showing how to limit risks from the generation side and load side. The goal is to design tools for new market for quantifiable and rigorous bound on the risk of violating.
5#
發(fā)表于 2025-3-22 10:58:34 | 只看該作者
Streaming Monitoring and Control for Real-Time Grid Operation,ation, we will conduct a probabilistic state estimation for understanding the system status. Finally, we will show how to use reinforcement learning to regulate voltages in unbalanced distribution grids with deep photovoltaic penetration.
6#
發(fā)表于 2025-3-22 16:02:47 | 只看該作者
Using PMU Data for Anomaly Detection and Localization,nd the linear dynamical system theory for performance guarantees. Since the PMU data are quite dense due to the extremely high data resolution, we introduce principal component analysis (PCA) and its variational form, e.g., robust PCA (RPCA). They show how to conduct fast data analytics within a short period of time.
7#
發(fā)表于 2025-3-22 19:47:36 | 只看該作者
8#
發(fā)表于 2025-3-23 00:46:45 | 只看該作者
Rajesh Sasikumar,Piergiorgio Neritors a system operator has an interest. Third, we show that the storage device can be coupled with the flexible load in Chap. .. Even better, we preserve user privacy consistently. The techniques to achieve these goals are sensitivity analysis, stochastic optimization, and long short-term memory (LSTM).
9#
發(fā)表于 2025-3-23 02:06:58 | 只看該作者
Emerging Technology for Distributed Energy Resources,ds. For example, we will show how to use the deep learning framework in a semi-supervised manner to detect solar panels based on satellite imagery. We will discuss how the penetration of electric vehicles will change the landscape of the power system operation, laying down the foundation for various solutions in later chapters.
10#
發(fā)表于 2025-3-23 07:44:25 | 只看該作者
Use of Energy Storage as a Means of Managing Variability,tors a system operator has an interest. Third, we show that the storage device can be coupled with the flexible load in Chap. .. Even better, we preserve user privacy consistently. The techniques to achieve these goals are sensitivity analysis, stochastic optimization, and long short-term memory (LSTM).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 03:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云浮市| 阿勒泰市| 永新县| 祁门县| 平和县| 巴楚县| 叙永县| 庆城县| 瑞昌市| 修文县| 乌拉特前旗| 江孜县| 宜城市| 平谷区| 绥棱县| 通辽市| 葫芦岛市| 犍为县| 夹江县| 始兴县| 濮阳市| 陆河县| 大方县| 江达县| 大理市| 靖边县| 达州市| 柏乡县| 赫章县| 通河县| 阳西县| 贵德县| 武平县| 长子县| 潮州市| 新闻| 秭归县| 中卫市| 嘉黎县| 栾城县| 读书|