找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science Solutions with Python; Fast and Scalable Mo Tshepo Chris Nokeri Book 2022 Tshepo Chris Nokeri 2022 Big Data Analytics.Machine

[復(fù)制鏈接]
查看: 55379|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:52:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Science Solutions with Python
副標(biāo)題Fast and Scalable Mo
編輯Tshepo Chris Nokeri
視頻videohttp://file.papertrans.cn/264/263069/263069.mp4
概述Explains techniques for integrating frameworks for high model performance.Presents a hybrid approach for rapid prototyping models, deploying and scaling them.Bridges the gap between machine and deep l
圖書封面Titlebook: Data Science Solutions with Python; Fast and Scalable Mo Tshepo Chris Nokeri Book 2022 Tshepo Chris Nokeri 2022 Big Data Analytics.Machine
描述Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process.?.The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras.. .The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Pr
出版日期Book 2022
關(guān)鍵詞Big Data Analytics; Machine Learning; Deep Learning; Python; Python Frameworks; Keras; Scikit-learn; PySpar
版次1
doihttps://doi.org/10.1007/978-1-4842-7762-1
isbn_softcover978-1-4842-7761-4
isbn_ebook978-1-4842-7762-1
copyrightTshepo Chris Nokeri 2022
The information of publication is updating

書目名稱Data Science Solutions with Python影響因子(影響力)




書目名稱Data Science Solutions with Python影響因子(影響力)學(xué)科排名




書目名稱Data Science Solutions with Python網(wǎng)絡(luò)公開度




書目名稱Data Science Solutions with Python網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science Solutions with Python被引頻次




書目名稱Data Science Solutions with Python被引頻次學(xué)科排名




書目名稱Data Science Solutions with Python年度引用




書目名稱Data Science Solutions with Python年度引用學(xué)科排名




書目名稱Data Science Solutions with Python讀者反饋




書目名稱Data Science Solutions with Python讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:15:34 | 只看該作者
oduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Pr978-1-4842-7761-4978-1-4842-7762-1
板凳
發(fā)表于 2025-3-22 01:57:06 | 只看該作者
and scaling them.Bridges the gap between machine and deep lApply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine lea
地板
發(fā)表于 2025-3-22 05:08:26 | 只看該作者
Leszek J. Chmielewski,Arkadiusz Or?owskiected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks. It also covers a deep learning framework called Keras. It concludes by discussing effective ways of setting up and managing these frameworks.
5#
發(fā)表于 2025-3-22 09:45:16 | 只看該作者
Big Data, Machine Learning, and Deep Learning Frameworks,ected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks. It also covers a deep learning framework called Keras. It concludes by discussing effective ways of setting up and managing these frameworks.
6#
發(fā)表于 2025-3-22 16:39:02 | 只看該作者
7#
發(fā)表于 2025-3-22 19:25:10 | 只看該作者
8#
發(fā)表于 2025-3-22 22:28:02 | 只看該作者
http://image.papertrans.cn/d/image/263069.jpg
9#
發(fā)表于 2025-3-23 04:13:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:10:29 | 只看該作者
https://doi.org/10.1007/978-3-031-00978-5This introductory chapter explains the ordinary least-squares method and executes it with the main Python frameworks (i.e., Scikit-Learn, Spark MLlib, and H2O). It begins by explaining the underlying concept behind the method.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
确山县| 江源县| 福建省| 宁化县| 武义县| 洞口县| 岫岩| 莱阳市| 福建省| 丹寨县| 车险| 石柱| 嘉黎县| 三台县| 蕲春县| 永康市| 福泉市| 苗栗市| 仪征市| 彭山县| 方城县| 元氏县| 清镇市| 中阳县| 洛川县| 南京市| 登封市| 库尔勒市| 靖宇县| 正阳县| 永春县| 霍山县| 连平县| 司法| 甘泉县| 昭觉县| 水城县| 普格县| 临清市| 平乐县| 彭山县|