找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science Revealed; With Feature Enginee Tshepo Chris Nokeri Book 2021 Tshepo Chris Nokeri 2021 Machine Learning.Python.Data Science.Dee

[復(fù)制鏈接]
查看: 34647|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:37:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Science Revealed
副標(biāo)題With Feature Enginee
編輯Tshepo Chris Nokeri
視頻videohttp://file.papertrans.cn/264/263067/263067.mp4
概述Covers the parametric, ensemble, and the non-parametric methods.Presents techniques to improve model performance in pre- and post-training.Summarizes H2O driverless AI and automatic forecasting using
圖書封面Titlebook: Data Science Revealed; With Feature Enginee Tshepo Chris Nokeri Book 2021 Tshepo Chris Nokeri 2021 Machine Learning.Python.Data Science.Dee
描述.Get insight into?data science techniques such as data engineering and visualization, statistical modeling, machine learning, and deep learning. This book teaches you how to select variables, optimize hyper parameters, develop pipelines, and train, test, and validate machine and deep learning models. Each chapter includes a set of examples allowing you to understand the concepts, assumptions, and procedures behind each model..The book covers parametric methods or linear models that combat under- or over-fitting using techniques such as Lasso and Ridge. It includes complex regression analysis with time series smoothing, decomposition, and forecasting. It takes a fresh look at non-parametric models for binary classification (logistic regression analysis) and ensemble methods such as decision trees, support vector machines, and naive Bayes. It covers the most popular non-parametric method for time-event data (the Kaplan-Meier estimator). It also covers ways of solving classification problems using artificial neural networks such as restricted Boltzmann machines, multi-layer perceptrons, and deep belief networks. The book discusses unsupervised learning clustering techniques such as th
出版日期Book 2021
關(guān)鍵詞Machine Learning; Python; Data Science; Deep Neural Networks; Regression; Classification; Time Series Anal
版次1
doihttps://doi.org/10.1007/978-1-4842-6870-4
isbn_softcover978-1-4842-6869-8
isbn_ebook978-1-4842-6870-4
copyrightTshepo Chris Nokeri 2021
The information of publication is updating

書目名稱Data Science Revealed影響因子(影響力)




書目名稱Data Science Revealed影響因子(影響力)學(xué)科排名




書目名稱Data Science Revealed網(wǎng)絡(luò)公開度




書目名稱Data Science Revealed網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science Revealed被引頻次




書目名稱Data Science Revealed被引頻次學(xué)科排名




書目名稱Data Science Revealed年度引用




書目名稱Data Science Revealed年度引用學(xué)科排名




書目名稱Data Science Revealed讀者反饋




書目名稱Data Science Revealed讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:16:57 | 只看該作者
地板
發(fā)表于 2025-3-22 06:51:30 | 只看該作者
5#
發(fā)表于 2025-3-22 12:13:43 | 只看該作者
6#
發(fā)表于 2025-3-22 12:59:52 | 只看該作者
Finding Hyperplanes Using Support Vectors,nce matrices are equivalent. Although the classifier is one of the optimum linear classification models, it has its limits. Foremost, we cannot estimate the dependent variable using a categorical variable. Second, we train and test the model under strict assumptions of normality. This chapter brings
7#
發(fā)表于 2025-3-22 19:14:24 | 只看該作者
8#
發(fā)表于 2025-3-23 00:55:53 | 只看該作者
9#
發(fā)表于 2025-3-23 04:59:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:06:31 | 只看該作者
Neural Networks,ks. Second, we cover back propagation and forward propagation. Third, it presents different activation functions. Last, it builds and test a Restricted Boltzmann Machine and a multilayer perceptron using the SciKit-Learn package, followed by deep belief networks using the Keras package. To install K
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 11:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永嘉县| 洪江市| 会宁县| 垦利县| 明溪县| 调兵山市| 峨边| 南开区| 来安县| 蓬安县| 龙州县| 海阳市| 兴和县| 太和县| 涞水县| 澳门| 荣成市| 青川县| 都昌县| 固安县| 墨脱县| 休宁县| 鲁甸县| 游戏| 栾城县| 利辛县| 高唐县| 伊宁市| 台前县| 四会市| 思南县| 阿勒泰市| 黄陵县| 哈巴河县| 霍城县| 璧山县| 资中县| 蓬莱市| 万安县| 达拉特旗| 连云港市|