找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science Fundamentals for Python and MongoDB; David Paper Book 2018 David Paper 2018 Data Science.Simulation.Monte Carlo Simulation.Li

[復制鏈接]
樓主: digestive-tract
21#
發(fā)表于 2025-3-25 05:46:37 | 只看該作者
Book 2018ides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms.?.The book is self-contain
22#
發(fā)表于 2025-3-25 11:02:53 | 只看該作者
A focused and easy-to-read fundamentals bookBuild the foundational data science skills necessary to work with and better understand complex data science algorithms. This?example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learn
23#
發(fā)表于 2025-3-25 11:50:14 | 只看該作者
24#
發(fā)表于 2025-3-25 17:43:41 | 只看該作者
25#
發(fā)表于 2025-3-25 23:32:55 | 只看該作者
26#
發(fā)表于 2025-3-26 03:55:49 | 只看該作者
Linear Algebra,. Practically every area of modern science approximates modeling equations with linear algebra. In particular, data science relies on linear algebra for machine learning, mathematical modeling, and dimensional distribution problem solving.
27#
發(fā)表于 2025-3-26 08:05:02 | 只看該作者
Gradient Descent,iteratively move toward a set of parameter values that minimize the function. Iterative minimization is achieved using calculus by taking steps in the negative direction of the function’s gradient. GD is important because optimization is a big part of machine learning. Also, GD is easy to implement,
28#
發(fā)表于 2025-3-26 11:15:11 | 只看該作者
Working with Data,hat needs to be done. The 2nd step is to gather data. The 3rd step is to wrangle (munge) data, which is critical. Wrangling is getting data into a form that is useful for machine learning and other data science problems. Of course, wrangled data will probably have to be cleaned. The 4th step is to v
29#
發(fā)表于 2025-3-26 15:34:28 | 只看該作者
30#
發(fā)表于 2025-3-26 18:00:26 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 10:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宝应县| 资兴市| 化德县| 宁河县| 义乌市| 吉木乃县| 泰和县| 竹溪县| 唐河县| 盐边县| 阜新市| 宜丰县| 彝良县| 上思县| 武夷山市| 河南省| 九台市| 保亭| 璧山县| 无锡市| 长岛县| 左云县| 贵溪市| 枣庄市| 绥化市| 西安市| 苏尼特右旗| 德庆县| 普陀区| 洪江市| 皋兰县| 介休市| 和林格尔县| 保定市| 铜梁县| 拜城县| 额济纳旗| 蒙城县| 汉川市| 儋州市| 大理市|