找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science Fundamentals for Python and MongoDB; David Paper Book 2018 David Paper 2018 Data Science.Simulation.Monte Carlo Simulation.Li

[復制鏈接]
樓主: digestive-tract
21#
發(fā)表于 2025-3-25 05:46:37 | 只看該作者
Book 2018ides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms.?.The book is self-contain
22#
發(fā)表于 2025-3-25 11:02:53 | 只看該作者
A focused and easy-to-read fundamentals bookBuild the foundational data science skills necessary to work with and better understand complex data science algorithms. This?example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learn
23#
發(fā)表于 2025-3-25 11:50:14 | 只看該作者
24#
發(fā)表于 2025-3-25 17:43:41 | 只看該作者
25#
發(fā)表于 2025-3-25 23:32:55 | 只看該作者
26#
發(fā)表于 2025-3-26 03:55:49 | 只看該作者
Linear Algebra,. Practically every area of modern science approximates modeling equations with linear algebra. In particular, data science relies on linear algebra for machine learning, mathematical modeling, and dimensional distribution problem solving.
27#
發(fā)表于 2025-3-26 08:05:02 | 只看該作者
Gradient Descent,iteratively move toward a set of parameter values that minimize the function. Iterative minimization is achieved using calculus by taking steps in the negative direction of the function’s gradient. GD is important because optimization is a big part of machine learning. Also, GD is easy to implement,
28#
發(fā)表于 2025-3-26 11:15:11 | 只看該作者
Working with Data,hat needs to be done. The 2nd step is to gather data. The 3rd step is to wrangle (munge) data, which is critical. Wrangling is getting data into a form that is useful for machine learning and other data science problems. Of course, wrangled data will probably have to be cleaned. The 4th step is to v
29#
發(fā)表于 2025-3-26 15:34:28 | 只看該作者
30#
發(fā)表于 2025-3-26 18:00:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 15:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
保德县| 思南县| 黔西县| 台中县| 辉县市| 芜湖市| 甘德县| 建湖县| 凯里市| 革吉县| 丰宁| 手机| 新乐市| 内丘县| 太白县| 峨山| 麻阳| 波密县| 固始县| 郴州市| 枝江市| 班戈县| 定兴县| 抚宁县| 浦北县| 乌兰察布市| 新建县| 额敏县| 延长县| 延津县| 兴安县| 新源县| 任丘市| 全椒县| 镇原县| 河北省| 东港市| 盱眙县| 伽师县| 通道| 马尔康县|