找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science; 8th International Co Yang Wang,Guobin Zhu,Zeguang Lu Conference proceedings 2022 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
查看: 51918|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:50:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Science
副標(biāo)題8th International Co
編輯Yang Wang,Guobin Zhu,Zeguang Lu
視頻videohttp://file.papertrans.cn/264/263047/263047.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Data Science; 8th International Co Yang Wang,Guobin Zhu,Zeguang Lu Conference proceedings 2022 The Editor(s) (if applicable) and The Author
描述.This two volume set (CCIS 1628 and 1629) constitutes the refereed proceedings of the 8th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2022 held in Chengdu, China, in? August, 2022...The 65 full papers and 26 short papers presented in these two volumes were carefully reviewed and selected from 261 submissions. The papers are organized in topical sections on: Big Data Mining and Knowledge Management; Machine Learning for Data Science; Multimedia Data Management and Analysis..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; communication systems; computer hardware; computer networks; computer systems; c
版次1
doihttps://doi.org/10.1007/978-981-19-5194-7
isbn_softcover978-981-19-5193-0
isbn_ebook978-981-19-5194-7Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Data Science影響因子(影響力)




書目名稱Data Science影響因子(影響力)學(xué)科排名




書目名稱Data Science網(wǎng)絡(luò)公開度




書目名稱Data Science網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science被引頻次




書目名稱Data Science被引頻次學(xué)科排名




書目名稱Data Science年度引用




書目名稱Data Science年度引用學(xué)科排名




書目名稱Data Science讀者反饋




書目名稱Data Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:13:56 | 只看該作者
地板
發(fā)表于 2025-3-22 08:09:55 | 只看該作者
https://doi.org/10.1007/978-3-319-56585-9extraction of essential data and the modeling strategy chosen. The data of the CTR task are often very sparse, and Factorization Machines (FMs) are a class of general predictors working effectively with it. However, the performance of FMs can be limited by the fixed feature representation and the sa
5#
發(fā)表于 2025-3-22 11:02:06 | 只看該作者
Nikolay Konstantinov,Sergey Dorichenkots at combining low-order and high-order functions. However, they ignore the importance of the attention mechanism for learning input features. The ECABiNet model is proposed in this article to enhance the performance of CTR. On the one hand, the ECABiNet model can learn the importance of features d
6#
發(fā)表于 2025-3-22 13:26:21 | 只看該作者
7#
發(fā)表于 2025-3-22 20:15:46 | 只看該作者
8#
發(fā)表于 2025-3-22 22:35:44 | 只看該作者
Nikolay Konstantinov,Sergey Dorichenkoflow graphs have attracted much attention since they can deal with the obfuscation problem to a certain extent. Many malware classification methods based on data flow graphs have been proposed. Some of them are based on user-defined features or graph similarity of data flow graphs. Graph neural netw
9#
發(fā)表于 2025-3-23 04:55:47 | 只看該作者
https://doi.org/10.1007/978-3-030-24933-5 and cannot obtain satisfactory results in some scenarios. In this paper, we design a semisupervised time series anomaly detection algorithm based on metric learning. The algorithm model mines the features in the time series from the perspectives of the time domain and frequency domain. Furthermore,
10#
發(fā)表于 2025-3-23 09:30:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙游县| 潜江市| 定日县| 治多县| 青浦区| 法库县| 江油市| 江都市| 清流县| 庐江县| 宁强县| 高安市| 东乡县| 临海市| 稻城县| 视频| 惠来县| 八宿县| 上林县| 巩留县| 宣恩县| 洛川县| 浦城县| 孟连| 广丰县| 彰化县| 青海省| 松江区| 长丰县| 南涧| 开封县| 旺苍县| 江口县| 东宁县| 仪陇县| 淅川县| 天祝| 建德市| 湖口县| 浮山县| 清丰县|