找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Profiling; Ziawasch Abedjan,Lukasz Golab,Thorsten Papenbrock Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
樓主: FETID
11#
發(fā)表于 2025-3-23 11:08:18 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:12 | 只看該作者
Profiling Non-Relational Data,, semi-structured data such as XML and RDF and non-structured data such as text. In this chapter, we describe two types of solutions: those which apply traditional data profiling algorithms to new types of data and those which develop new approaches to profiling non-relational data.
13#
發(fā)表于 2025-3-23 21:31:21 | 只看該作者
14#
發(fā)表于 2025-3-24 01:01:21 | 只看該作者
Conclusions,s for discovering unique column combinations, functional dependencies among columns, and inclusion dependencies among tables. While the focus of this book is on exact profiling of relational data, we provided a brief discussion of approximate profiling using data sketches and profiling non-relational data, such as text and graphs.
15#
發(fā)表于 2025-3-24 05:23:45 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:59 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:20 | 只看該作者
Discovering Metadata,the data or dependencies among columns, can help understand and manage new datasets. In particular, the advent of “Big Data,” with the promise of data science and data analytics, and with the realization that business insight may be extracted from data, has brought many datasets into organizations’
18#
發(fā)表于 2025-3-24 14:54:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:34 | 只看該作者
Single-Column Analysis,ingle-column profiling tasks that we describe in more detail in the first part of this chapter. The second part discusses technical details and usage scenarios for certain single column profiling tasks. We refer the interested reader to Maydanchik [2007], a book addressing practitioners, for further
20#
發(fā)表于 2025-3-24 23:34:51 | 只看該作者
Dependency Discovery,. tables, respectively [Toman and Weddell, 2008]. If the UCCs, FDs, and INDs are known, data scientists and IT professionals can use them to define valid key and foreign-key constraints (e.g., for schema normalization or schema discovery). Traditionally, constraints, such as keys, foreign keys, and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金昌市| 扶余县| 桐乡市| 金华市| 同心县| 长子县| 社会| 宁强县| 隆回县| 遂川县| 大埔区| 汉川市| 浦江县| 邛崃市| 赤峰市| 东安县| 清原| 新沂市| 大足县| 房山区| 垦利县| 澄迈县| 曲麻莱县| 商城县| 九龙坡区| 乐业县| 自贡市| 通江县| 巴彦淖尔市| 奉贤区| 永安市| 双鸭山市| 土默特左旗| 禄丰县| 宜春市| 湘潭县| 屯门区| 车险| 闵行区| 新巴尔虎右旗| 华蓥市|