找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Profiling; Ziawasch Abedjan,Lukasz Golab,Thorsten Papenbrock Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
樓主: FETID
11#
發(fā)表于 2025-3-23 11:08:18 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:12 | 只看該作者
Profiling Non-Relational Data,, semi-structured data such as XML and RDF and non-structured data such as text. In this chapter, we describe two types of solutions: those which apply traditional data profiling algorithms to new types of data and those which develop new approaches to profiling non-relational data.
13#
發(fā)表于 2025-3-23 21:31:21 | 只看該作者
14#
發(fā)表于 2025-3-24 01:01:21 | 只看該作者
Conclusions,s for discovering unique column combinations, functional dependencies among columns, and inclusion dependencies among tables. While the focus of this book is on exact profiling of relational data, we provided a brief discussion of approximate profiling using data sketches and profiling non-relational data, such as text and graphs.
15#
發(fā)表于 2025-3-24 05:23:45 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:59 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:20 | 只看該作者
Discovering Metadata,the data or dependencies among columns, can help understand and manage new datasets. In particular, the advent of “Big Data,” with the promise of data science and data analytics, and with the realization that business insight may be extracted from data, has brought many datasets into organizations’
18#
發(fā)表于 2025-3-24 14:54:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:34 | 只看該作者
Single-Column Analysis,ingle-column profiling tasks that we describe in more detail in the first part of this chapter. The second part discusses technical details and usage scenarios for certain single column profiling tasks. We refer the interested reader to Maydanchik [2007], a book addressing practitioners, for further
20#
發(fā)表于 2025-3-24 23:34:51 | 只看該作者
Dependency Discovery,. tables, respectively [Toman and Weddell, 2008]. If the UCCs, FDs, and INDs are known, data scientists and IT professionals can use them to define valid key and foreign-key constraints (e.g., for schema normalization or schema discovery). Traditionally, constraints, such as keys, foreign keys, and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新安县| 隆林| 海林市| 蕉岭县| 万全县| 关岭| 韶关市| 原阳县| 金坛市| 当雄县| 大埔县| 泸溪县| 龙门县| 宿松县| 彝良县| 临夏县| 栾城县| 康保县| 珠海市| 曲阜市| 察隅县| 梁平县| 仁寿县| 湖口县| 静乐县| 正安县| 丹棱县| 滨海县| 库车县| 亚东县| 灌阳县| 清水河县| 和静县| 沈丘县| 邵阳市| 普陀区| 澄迈县| 兴安盟| 镇安县| 武清区| 农安县|